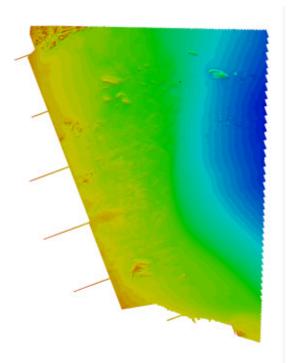
NATIONAL OCEAN SURVEY DESCRIPTIVE REPORT Type of Survey: Navigable Area **V0018** Registry Number: W00181 LOCALITY State: Massachusetts & New Hampshire General Locality: Gulf of Maine Sub-locality: 2 NM North of Cape Ann 2007 CHIEF OF PARTY Outside Source Data (SAIC) LIBRARY & ARCHIVES

DATE

NOAA FORM 76-35A


U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Southern Merrimack Embayment Multibeam Survey

Survey Report April 30, 2004

Under contract to University of New Hampshire Contract: 04-855

Prepared For: U.S. Geological Survey, Woods Hole, MA

Prepared by:

Science Applications International Corporation 221 Third Street, Newport, Rhode Island, 02840

Southern Merrimack Embayment Multibeam Survey

Survey Report

SAIC Doc 04-TR-004

Changes in this document shall be recorded in the following table in accordance with SAIC Quality System Procedure, QSP 4.2.3 Control of Documents.

	Revisions						
Rev	Date	Approved by	Remarks				
0	04/30/04	All		Original Document			

REPORT CERTIFICATION

This document has been reviewed and approved for distribution in accordance with SAIC Quality System Procedure, QSP 4.2.3 Control of Documents.

Pam Clark

Lead Hydrographer

SAIC

Date: 04/30/04

Lisa M. Infantino

Quality Manager, ISO Management Representative

SAIC

Date: 04/30/04

Gary C. Parker

Program Manager

SAIC

Date: 04/30/04

Table of Contents

1.	Ι	INTRO	DUCTION	1
2.	S	SURVE	EY PLAN	1
3.	(OPERA	ATIONS	2
	3.1	THE	SURVEY VESSEL	
		3.1.1	ACQUISITION SYSTEMS AND OPERATIONS	3
		3.1.2	VESSEL CONFIGURATION PARAMETERS	4
		3.1.3	STATIC AND DYNAMIC DRAFT MEASUREMENTS	5
		3.1.4	SOUND VELOCITY PROFILES	5
	3.2	SUR	VEY OPERATIONS	
		3.2.1	LEG 1: PATCH TEST	7
		3.2.2	LEG 2: CAPE ANN SURVEY	7
		3.2.3	LEG 3: GAP FILLS AND ADDITIONAL SURVEY	7
	3.3	MUI	LTIBEAM BIAS CALIBRATION RESULTS (PATCH TEST)	8
		3.3.1	TIMING TEST	8
	3	3.3.2	SETTLEMENT AND SQUAT	9
		3.3.3	ALIGNMENT RESULTS	9
		3.3.3	8.1 ROLL ALIGNMENT	9
		3.3.3	B.2 PITCH ALIGNMENT	0
		3.3.3	B.3 HEADING ALIGNMENT	1
4.	Ι	DATA	PROCESSING 12	2
	4.1	MU	LTIBEAM BATHYMETRY DATA PROCESSING 12	2
	2	4.1.1	TIDES AND WATER LEVELS	3
	2	4.1.2	DRAFT	3
	4.2	MU	LTIBEAM IMAGERY DATA PROCESSING 14	4
	2	4.2.1	IMAGERY COVERAGE MOSAIC14	4
	2	4.2.2	IMAGERY QUALITY	4
	4.3	ANN	NOTATED TRACK LINES	5
	4.4	JUN	CTION ANALYSIS 15	5
	4.5	CHA	ART COMPARISON	5
	4.6	DEL	IVERABLES	5
5.	I	ACKN	OWLEDGMENTS17	7

List of Figures

Figure 1.	Cape Ann Survey Plan	.1
Figure 2.	The R/V OceanExplorer	.2
Figure 3.	Reson 8101 Installation on the R/V OceanExplorer	.3
Figure 4.	Equipment Locations on the R/V OceanExplorer, Meters	.5
Figure 5.	<i>R/V OceanExplorer Draft Determination</i>	.6
Figure 6.	MVP Installation on the R/V OceanExplorer	.7
Figure 7.	Timing Test Results (9 May 2003)	.8
Figure 8.	Swath Alignment Tool: Roll Bias = $+0.47^{\circ}$	0
Figure 9.	Swath Alignment Tool: Pitch Bias = -1.4°	11
Figure 10	Swath Alignment Tool: Gyro $Bias = +0.8^{\circ}$	12

List of Tables

Table 1.	Survey Vessel Characteristics, R/V OceanExplorer	2
Table 2.	R/V OceanExplorer Acquisition System	3
Table 3.	SV&P Sensor Calibrations	6
	Settlement Results for the <i>R/V OceanExplorer</i>	
Table 5.	Alignment Bias Calculated using Swath Alignment Tool	9
Table 6.	Draft Applied to the Multibeam Files in SABER	14
Table 7.	Junction Analysis All Main Scheme vs. Cross Lines Near Nadir	15

APPENDIX A	DAILY REPORTS
APPENDIX B	WATCHSTANDER LOGS
APPENDIX C	SVP LOG
APEENDIX D	LEADLINE COMPARISON LOG
APPENDIX E	TIMES OF HYDROGRAPHY

1. INTRODUCTION

Science Applications International Corporation (SAIC), under contract to the University of New Hampshire, conducted a multibeam survey within the Southern Merrimack Embayment to support the requirements of the US Geological Survey, Woods Hole, MA. This survey acquired bathymetry and imagery with the Reson 8101 multibeam echo sounder on the *R/V OceanExplorer* operated by SAIC. The project area off the north coast of Cape Ann, MA, shown in Figure 1, was surveyed in two phases 1.) the original survey area as presented in the Statement of Work, January 6, 2004, 2.) an additional survey area as agreed on March 5, 2004.

Vessel operation, data acquisition, initial data processing, and on board quality assurance were performed by SAIC. This report documents the field survey and data processing effort. Concur

2. SURVEY PLAN

The survey bounds consisted of a rectangular area approximately 19 km by 25 km in dimension from Halibut Point, Cape Ann, MA to Breaking Rocks nun and out 17.6 km. The survey comprised 328 main scheme lines at 50, 75, 100, 125, 150 and 200-meter spacing and 6 cross lines at 3 kilometer spacing. The survey plan is presented in Figure 1.

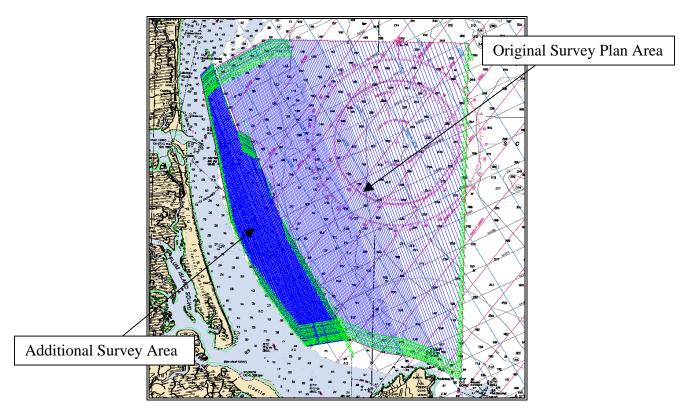


Figure 1. Cape Ann Survey Plan

The area was surveyed with the Reson 8101 with the cutoff angles set at 57° (114° total swath) in order to provide approximately three times the water depth per swath. The area was covered with 100% multibeam coverage. Vessel speed for the survey was nominally 9 knots. Concur

3. OPERATIONS Concur

3.1 The Survey Vessel

SAIC used the R/V OceanExplorer, operated by Northeast Marine Services, as the survey vessel during the performance of this survey. Table 1 tabulates the vessel characteristics for the R/V OceanExplorer shown in Figure 2.

Vessel Name	LOA	Beam	Draft	Max Speed	Gross Tonnage	Power (Hp)	Registration Number
R/V Ocean Explorer	60'	16'4"	6'	17 kts	56	1100	US905425

Table 1. Survey Vessel Characteristics, R/V OceanExplorer

Figure 2.	The R/V	OceanExplorer
-----------	---------	---------------

The main cabin of the vessel was configured as the data collection center. A POS/MV position and attitude sensor was used to provide vessel position and attitude data, while a Reson 8101 Multibeam Depth Sounder was used to acquire bathymetric and acoustic backscatter data. The Inertial Motion Unit (IMU) was mounted on the vessel centerline just forward and above the Reson 8101 multibeam transducer, below the main deck. The multibeam transducer was mounted on the keel, as shown in Figure 3. A Brooke Ocean Technology Moving Vessel Profiler (MVP) was used to provide sound velocity profiles while underway.

Figure 3. Reson 8101 Installation on the R/V OceanExplorer

3.1.1 Acquisition Systems and Operations

The real time bathymetry/imagery acquisition system used for the USGS/UNH Cape Ann Survey is detailed in Table 2.

Subsystem	Components			
Multibeam Data Acquisition and Display				
Multibeam Sonar	Reson 8101 24 kHz Multibeam Depth Sounder. 81P sonar processor.			
Motion Sensor	TSS POS/MV Model 320 Position and Orientation System			
Sound Velocity Profiler (SVP)	Brooke Ocean Technology: MVP 30 System and Applied Microsystems Smart Sound Velocity Sensor			
Data Acquisition and Display	PC Computer (ISSC) running SAIC ISS2000 Integrated Survey System Software			
Daily Log Reporting	PC Laptop Computer running iNavLog Real-Time operations log software.			
Uninterrupted Power Supplies (UPS)	Protected the entire system.			
Na	vigation			
Vessel Positioning	TSS POS/MV Model 320 Position and Orientation System			
GPS	Trimble 7400 GPS Receiver (Quality Monitoring)			
DGPS	Trimble DGPS Beacon Receiver			
Integrated Navigation System	SAIC ISS2000			
AutoPilot	Robertson AP9 MkII			

Table 2. R/V OceanExplorer Acquisition System

Data acquisition was carried out using the SAIC ISS2000 system. Real-time navigation, data time tagging and data logging were controlled by the ISS2000 on a Windows 2000 computer. Survey planning, data processing and analysis were performed on LINUX machines using SAIC's SABER software.

Navigation was recorded from both the POS/MV system and the Trimble 4000. Data from the POS/MV was used as the primary navigation and was merged with the multibeam data. Vessel positioning confidence checks were done by comparing data recorded from the POS/MV to data recorded from the Trimble DGPS.

3.1.2 Vessel Configuration Parameters

During SAIC's preparation for the 2003 survey season the acquisition system configuration aboard the *R/V OceanExplorer* was measured in reference to the IMU and converted to be relative to the Reson 8101 transducer, Figure 4.

The SAIC Integrated Survey System (ISS2000) and the Reson 8101 multibeam system utilize different coordinate systems. The ISS2000 considers "z" to be positive down, while both the Reson and POS/MV consider "z" positive up. Both the ISS2000 and POS/MV consider "x" positive forward, the Reson considers "x" as positive athwart ships to starboard. The SAIC ISS2000 considers "y" positive athwart ships to starboard, the POS/MV considers "y" positive athwart ships to port and the Reson considers "y" as positive forward. These differences are fully accounted for in the ISS2000 software.

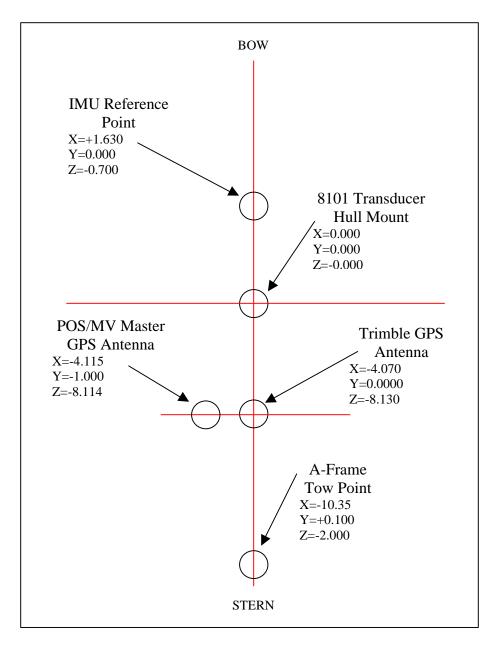


Figure 4. Equipment Locations on the R/V OceanExplorer, Meters

3.1.3 Static and Dynamic Draft Measurements

Figure 5 shows the draft calculations for the R/V OceanExplorer. Depth of the transducer below the deck was determined from measurements made while the boat was hauled in May 2000 and confirmed when the vessel was hauled in July 2002. The transducer depth was recorded as 3.07 meters below the vessel's main deck. The distance below the boat deck to the water surface was measured and subtracted from the transducer hull depth to determine the draft of the transducer's electronic center.

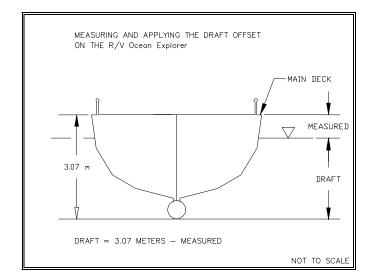


Figure 5. R/V OceanExplorer Draft Determination

The static draft was observed at the beginning and end of each survey leg, by measuring from the main deck to the waterline and subtracting that measurement from the transducer distance below the deck. The measured static draft value was recorded in the real time Watchstander Log, refer to APPENDIX B. If the static draft value changed from the previously noted value, the new value was entered into the ISS2000 system. Draft was interpolated to derive daily correctors, applied during post processing, as discussed in Section 4.1.2.

3.1.4 Sound Velocity Profiles

A Brooke Ocean Technology Ltd. Moving Vessel Profiler (MVP), with an Applied Microsystems, Ltd. Smart Sound Velocity & Pressure sensor was used to determine Sound Velocity Profile (SVP) for corrections to multibeam sonar soundings. Serial numbers and calibration dates for the SVP sensors are presented in Table 3. The system is mounted on the starboard stern of the vessel, as shown in Figure 6.

Instrument	Serial Number	Calibration Report/Date	Next Cal Due	Comments
Applied Microsystems, Ltd, Smart SV & P Sensor	4880	10/14/03	10/14/04	New Instrument
Applied Microsystems, Ltd, Smart SV & P Sensor	4881	10/14/03	10/14/04	New Instrument

Table 3.	SV&P	Sensor	Calibrations
----------	------	--------	--------------

Figure 6. MVP Installation on the R/V OceanExplorer

3.2 Survey Operations

Survey operations were conducted in 3 legs: February 17 to February 18 (JD 048,049), February 23 to March 1 (JD 054 to 061) and March 14 to March 16, 2004 (JD 074 to 076). Prior to the beginning of each leg a Leadline Comparison was conducted. During each leg a SVP Comparison Cast was conducted to verify SVP Sensor accuracy. Draft was recorded at the start and end of each leg.

3.2.1 Leg 1: Patch Test

Upon crew arrival on February 17, 2004, all acquisition and processing machines were powered on and performance checks were conducted. All systems were deemed functional and ready for survey operations to commence February 18, 2004. The Patch Test was conducted on the way to the survey site. Weather deteriorated upon arrival at the survey site and after two hours SAIC halted all survey operations and returned to Cape Ann Marina. Section 3.3.3 presents the Alignment Results obtained on 18 February.

3.2.2 Leg 2: Cape Ann Survey

The survey crew arrived February 22, 2004. All systems were deemed functional and the vessel headed to the survey site on the morning of February 23, 2004. Weather remained favorable for the next 8 days. Upon completion of the main survey lines, defining the Statement of Work (SOW) area on March 1, 2004, the vessel halted survey operations headed to Cape Ann Marina and all systems were shutdown. Data were reviewed for gaps and additional survey lines required to complete the original survey area were defined. Additional survey area coverage was discussed with the USGS and a survey extension of one day was agreed.

3.2.3 Leg 3: Gap Fills and Additional Survey

The survey crew arrived March 13, 2004. All systems were deemed functional and the survey vessel headed to the survey site on the morning of March 14, 2004. There was a narrow weather window for the remaining three days of survey in which the gap fills were completed and

additional survey was conducted an area in-shore of the original SOW area, as shown above in Figure 1.

Survey Logs developed during the course of the survey are provided as appendices to this report, as follows:

APPENDIX A for Daily Reports, APPENDIX B for Watchstander Logs APPENDIX C for Sound Velocity Profile (SVP) Log APPENDIX D for Leadline Comparison Log APPENDIX E for Times of Hydrography

3.3 Multibeam Bias Calibration Results (Patch Test)

SAIC conducted Settlement, Squat and Alignment calibrations from May 9-20, 2003 prior to the commencement of the survey season. On February 18, 2004 a subsequent alignment was conducted in route to the survey area to ensure the Reson 8101 was not damaged during transit to Gloucester, MA from Newport, RI.

3.3.1 Timing Test

A ping-timing test was completed on May 9, 2003 to verify there were no time latencies occurring in ISS2000. To perform this test, the user logs ping times from an IRIG-B timing card triggered from the Reson 81P ping trigger. A standard multibeam file is logged simultaneously. While logging, the ping rate is slowly increased from 1 ping/sec to 14.9 pings/sec. The times in each file are compared. The difference in like time tags was no more than 3 milliseconds. Timing tests of ISS2000 were successfully completed prior to any other calibration tests.

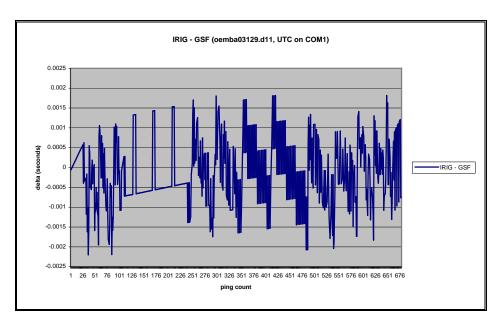


Figure 7. Timing Test Results (9 May 2003)

3.3.2 Settlement and Squat

Settlement and squat of the vessel was conducted May 15-18, 2003, using a land survey level set up at the end of a jetty; drifting, at 600, 800, 1000, 1200, 1600, and 2000 rpm (Table 4). Reference speeds were observed at the rpm setting and recorded.

Engine RPM	Speed Knots*	Settlement Meters
0	1	0.00
600	5	-0.03
800	7	-0.02
1000	8	-0.04
1200	9	-0.03
1600	12	-0.08
2000	15	-0.22

 Table 4. Settlement Results for the R/V OceanExplorer

*NOTE: The speed in knots listed in Table 4 were not used in the Settlement and Squat Lookup Table, but are given here as approximate average values for reference. In practice, the RPM values are used because they more closely correspond to speed through the water.

3.3.3 Alignment Results

Multibeam alignment calibration operations were conducted on board the *R/V OceanExplorer* on February 18, 2004. These tests were off Cape Ann, Massachusetts over a charted wreck. The calibration tests resulted in no bias changes to the previous values of: Pitch = -1.4° , Roll = $+0.47^{\circ}$, and Gyro = $+0.8^{\circ}$, presented in Table 6.

Component	Multibeam fi	Result	
Pitch	oemba04049.d08	oemba04049.d09	-1.4°
Roll	oemba04049.d08	oemba04049.d09	+0.47°
Gyro	oemba04049.d10	oemba04049.d11	+0.8°

Table 5. Alignment Bias Calculated using Swath Alignment Tool

3.3.3.1 Roll Alignment

Roll alignment data were collected with $+0.47^{\circ}$ entered into the acquisition system. Multibeam files oemba04049.d08 and oemba04049.d09 were used for determining roll bias. The following are images of the SABER: Swath Alignment Tool (SAT) depicting data with $+0.47^{\circ}$ roll bias entered into ISS2000, therefore the indicated bias shown is set to 0.0° .

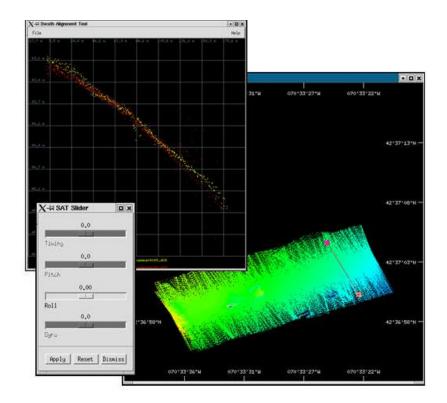
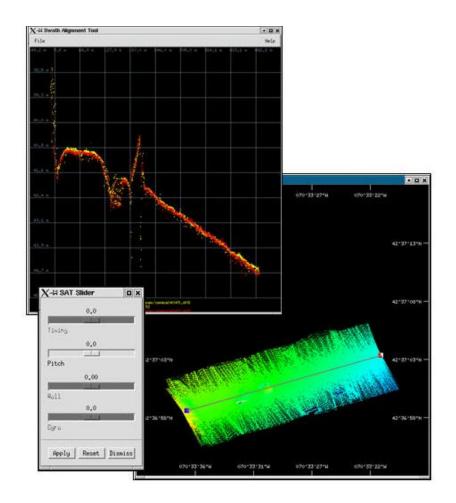



Figure 8. Swath Alignment Tool: Roll Bias = +0.47 •

3.3.3.2 Pitch Alignment

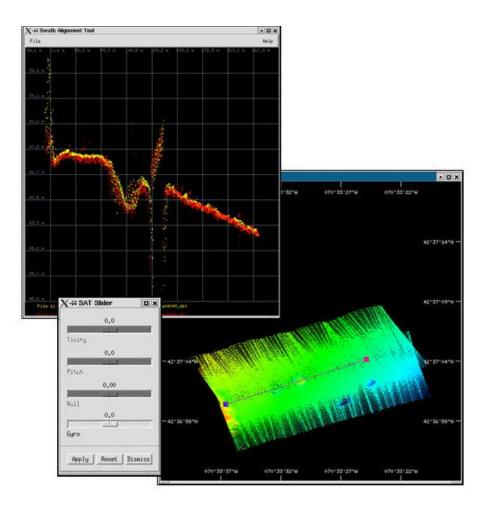

Pitch alignment data were collected with -1.4° entered into the acquisition system. Multibeam files oemba04049.d08 and oemba04049.d09 were used for determining pitch alignments. The following are images of the SABER: Swath Alignment Tool depicting data with -1.4° pitch bias entered into ISS2000, therefore the indicated bias shown is set to 0.0° .

Figure 9. Swath Alignment Tool: Pitch Bias = -1.4•

3.3.3.3 Heading Alignment

Heading alignment data were collected with a $+0.8^{\circ}$ entered into the acquisition system. Survey lines were run on either side of the wreck in opposite directions. Multibeam files oemba04049.d10 and oemba04049.d11 were used to determine the input bias was correct for gyro. The following are images of the SABER: Swath Alignment Tool depicting data with $+0.8^{\circ}$ gyro bias entered in the ISS2000 system; therefore the indicated bias shown is set to 0.0° .

Figure 10. Swath Alignment Tool: Gyro Bias = +0.8•

4. DATA PROCESSING Concur

4.1 Multibeam Bathymetry Data Processing

The majority of the multibeam data were initially edited onboard the vessel, using SAIC's Multi View Editor (MVE) program. This tool is a geo-referenced editor, which allows for both plan and profile views with each beam in its true geographic position and depth. Each data file was edited to remove noise, fish, etc. At the end of each leg, both the raw and processed data were backed up onto 4mm tapes and shipped to the Data Processing Center in Newport, RI.

Once the data were in Newport and had been extracted to local machines, track lines were created by extracting the sounder position from the multibeam data. The tracks were reviewed to confirm that no errors in navigation existed and that the tracks extended to the outermost bounds of the survey area.

After the application of preliminary tides and interpolated draft, multibeam binned-depth grids were generated. A 5-meter Pure File Magic (PFM) grid was generated and edited in area based mode using MVE. The 5-meter projected PFM allowed multiple line editing which enhances visualization and proves efficient in the MVE process to ensure data quality. If any anomalies were

found in the sounding bins, the edited multibeam files were re-examined and re-edited as necessary. When all multibeam files were determined to be satisfactory, the data were binned to a 5-meter and 2-meter cell size, populating the bin with the average of all soundings in the bin and maintaining the position of the center of the bin.

4.1.1 Tides and Water Levels See also evaluation report.

The NOAA tide station in Portland, ME 8418150 was the source of preliminary water level heights for this Southern Merrimack Embayment Multibeam Survey. Preliminary tide data for this station were downloaded from the NOAA CO-OPS web page (<u>http://www.co-ops.nos.noaa.gov/hydro.html</u>). All tide data were annotated with Coordinated Universal Time (UTC). An alternative tide station Boston Light, MA 8444162 was monitored in case the Portland station was inactive. There were no problems with the Portland, ME data. SAIC created two tide zones for the survey area with the following parameters:

The zoning parameters SAIC created were:

On Portland, ME	(8418150)	+ 8 minutes	ratio 0.964
On Boston Light, MA	A (8444162)	+2 minutes	ratio 0.972

All bathymetry data collected during the survey were corrected for water level variations using water level files. Water level files for each tide zone were created from downloaded preliminary NOAA tide data using the SABER Create Water Level Files tool. Water level files contain water level heights that are subtracted algebraically from depths to correct the sounding for tide and water level. These water level files were applied to the multibeam data using the Apply Tides tool within the SABER software.

Comparison of the zoned 6-minute water level heights computed from Boston Light, MA (8444162) to those computed from Portland, ME (8418150) shows an average height difference of 0.009 meters and a standard deviation of 0.042 meters. The maximum and minimum differences were +0.125 meters and -0.078 meters. Because the Portland, ME (8418150) gauge is a NOAA Primary Control Tide Station water level zoned heights from that station were used to correct the soundings.

When the preliminary water level zoned heights file was applied to the GSF files, the program removed the predicted tide corrector and applied the new corrector. Each time a routine was run on the GSF multibeam data file, a history record was written at the end of the GSF file. For quality assurance the Check Tides program was run on all GSF files to confirm that the appropriate water level corrector had been applied to the GSF file.

4.1.2 Draft

Draft was observed at the beginning and the end of each leg and recorded in the Watchstander Log, shown in APPENDIX B, and the ISS2000 system. Applied draft was determined by taking the difference of the draft from the start of the leg and the draft at the end each leg and incremented for the days of the leg. The drafts applied to each necessary multibeam file using Apply Correctors/Offsets in SABER is presented in Table 7.

Calendar	JD	Recorded Draft	Applied Draft	Notes
02/17/04	048	1.40	1.40	Arrival
02/18/04	049	1.41	1.41	Start & End
02/23/04	054	1.41	1.41	Start Leg
02/24/04	055		1.41	
02/25/04	056		1.41	
02/26/04	057	1.41	1.41	End Leg
02/26/04	057	1.43	1.43	Start Leg
02/27/04	058		1.43	
02/28/04	059		1.43	
02/29/04	060		1.42	
03/01/04	061	1.42	1.42	End Leg
03/14/04	074	1.44	1.44	Start Leg
03/15/04	075		1.44	
03/16/04	076	1.43	1.43	End Leg

Table 6. Draft Applied to the Multibeam Files in SABER

4.2 Multibeam Imagery Data Processing

Digital side-scan data were recorded in Extended Triton Format (XTF), in real time, from the Reson 8101. During the first day of acquisition a 1-meter mosaic was generated in SABER to check for data quality; throughout the survey this mosaic was appended to at convenient intervals. At the end of each survey leg the files were copied to 4mm tapes in tar format for transfer to the data processing facility. The XTF data was bottom tracked in Triton ISIS and a 5-meter mosaic was generated.

4.2.1 Imagery Coverage Mosaic

The raw XTF data underwent further processing in order to generate a 5-meter side-scan mosaic. The default extension given to data collected using the ISSC system was *.d* (i.e. *.d03, *.d04, numbered consecutively as files are created), the side-scan XTF data file names were changed to reflect the standard *.xtf extension before further processing was completed. The XTF data was first bottom tracked in Triton ISIS. A time window file, was created for the side scan coverage. These time window files were then used to create track lines to check navigation. A preliminary 5-meter mosaic was created and viewed using the SABER tools to verify swath coverage, bottom tracking, and gain changes by line. After edits were made to the bottom tracking, time windows, and gain settings, the final 5-meter mosaic was generated, quality controlled and exported as a tiff image from SABER.

4.2.2 Imagery Quality

The image quality was good throughout the survey area. The multibeam side-scan data depicts distinct bottom type boundaries as well as small-scale features such as trawl scars and small rocks. Features, such as rock outcrops were clearly delineated out to the deepest areas of the survey.

Three areas of note on the final 5-meter side-scan mosaic include:

- 1. In the eastern section of the mosaic there are prominent geologic features where the slant range corrections are not correct, despite the accurate application of bottom tracking. This is due to the rapidly changing slope over these features. Mosaic parameters in SABER were set to generate the best possible output.
- 2. A few highly reflective areas (usually those over prominent geologic features) of the mosaic showed gain changes toward the outer edge of the side-scan swath. Changes to gain and TVG settings were minimized during acquisition and post-processing to create the most consistent image possible. In areas where the bottom type was primarily soft, less reflective bottom with occasional hard, highly reflective features, the TVG settings were optimized for the more prevalent less reflective bottom type. In all cases the highly reflective features are fully delineated.
- 3. During acquisition, differences in the appearance of multibeam imagery between port and starboard channels were evident. These differences are magnified in the 5-meter mosaic as evidenced by the different textures between the two channels. Both channels clearly show small scale features such as the trawl scars, sediment boundaries, sand waves and other geologic features.

4.3 Annotated Track Lines

Track lines were generated in SABER, exported as a DXF and then brought into AutoCAD to clean and add Line Name Annotations, then exported as a dxf file for delivery. The format of the dxf file was mutually agreed upon by SAIC and USGS.

4.4 Junction Analysis

The Table 8 comparisons of all crossing data in the Southern Merrimack Embayment Multibeam Survey show that 95.80% of comparisons are within 50 centimeters. Comparisons greater than 200 centimeters were located in the northwest area of the survey on steep slopes of prominent geologic features and result from normal small DGPS position fluctuations. Junction Analysis is performed in SABER.

Depth Di			All	Pos	itive	Neg	ative	Zero
Rai	nge	Count	Percent	Count	Percent	Count	Percent	Count
0 cm to	5 cm	9110	26.88	4498	21.07	3736	32.01	
5 cm to	10 cm	7058	47.71	4199	40.75	2859	56.51	
10 cm to	15 cm	4611	61.31	2927	54.46	1684	70.94	
15 cm to	20 cm	4107	73.43	2684	67.04	1423	83.14	
20 cm to	25 cm	2601	81.11	1874	75.82	727	89.37	
25 cm to	30 cm	1979	86.95	1488	82.79	491	93.57	
30 cm to	35 cm	1165	90.38	915	87.07	250	95.72	
35 cm to	40 cm	695	92.43	556	89.68	139	96.91	
40 cm to	45 cm	664	94.39	532	92.17	132	98.04	
45 cm to	50 cm	475	95.8	395	94.02	80	98.72	
50 cm to	60 cm	604	97.58	523	96.47	81	99.42	

Table 7. Junction Analysis All Main Scheme vs. Cross Lines Near Nadir

Depth Di	fference		All	Pos	itive	Neg	ative	Zero
Rai	nge	Count	Percent	Count	Percent	Count	Percent	Count
60 cm to	70 cm	257	98.34	240	97.6	17	99.56	
70 cm to	80 cm	190	98.9	181	98.44	9	99.64	
80 cm to	90 cm	119	99.25	111	98.96	8	99.71	
90 cm to	100 cm	79	99.48	70	99.29	9	99.79	
100 cm to	110 cm	66	99.68	64	99.59	2	99.8	
110 cm to	120 cm	24	99.75	23	99.7	1	99.81	
120 cm to	130 cm	24	99.82	23	99.81	1	99.82	
130 cm to	140 cm	20	99.88	18	99.89	2	99.84	
140 cm to	150 cm	9	99.9	7	99.93	2	99.85	
150 cm to	160 cm	6	99.92	1	99.93	5	99.9	
160 cm to	170 cm	2	99.93	1	99.93	1	99.91	
170 cm to	180 cm	3	99.94	1	99.94	2	99.92	
180 cm to	190 cm	4	99.95	2	99.95	2	99.94	
190 cm to	200 cm	3	99.96	2	99.96	1	99.95	
200 cm to	220 cm	2	99.96	1	99.96	1	99.96	
220 cm to	240 cm	3	99.97	0	99.96	3	99.98	
240 cm to	260 cm	2	99.98	2	99.97	0	99.98	
260 cm to	280 cm	0	99.98	0	99.97	0	99.98	
280 cm to	300 cm	0	99.98	0	99.97	0	99.98	
300 cm to	320 cm	2	99.98	1	99.98	1	99.99	
320 cm to	340 cm	2	99.99	2	99.99	0	99.99	
340 cm to	360 cm	0	99.99	0	99.99	0	99.99	
360 cm to	380 cm	2	99.99	2	100	0	99.99	
380 cm to	400 cm	1	100	0	100	1	100	
400 cm to	420 cm	0	100	0	100	0	100	
420 cm to	440 cm	0	100	0	100	0	100	
440 cm to	460 cm	1	100	1	100	0	100	
	Totals	33890	100%	21344	62.98%	11670	34.43%	876
								2.58%

4.5 Chart Comparison

A display of selected soundings in feet (MLLW), 1:20,000 scale, was generated from a 5 meter average grid in SABER and compared to NOAA Chart 13278_1, 1:80,000 scale 2nd edition March 7, 1998. There are subtle changes along the depth curves and the water depths near the N "2" Breaking Rocks buoy are deeper than charted. Based on the average depths generated from the data collected in this survey, there has not been a great deal of change in the area compared to Chart 13278_1.

4.6 Deliverables

SAIC is delivering on 300 GB Hard-Drive the following: Multibeam GSF Files: Raw Multibeam Bathymetry GSF files

Processed Multibeam Bathymetry GSF files Side-Scan XTF Files: Multibeam Side-Scan Imagery XTF files **ASCII Sound Velocity Profiles: SVP ASCII** files Tide Corrector Files: NOAA Gauge File Water Level File Multibeam XYZ Files: 5 Meter Average Depth (MLLW) XYZ 2 Meter Average Depth (MLLW) XYZ Annotated Track Line File: Annotated Track Lines R14 DXF Multibeam TIFF Images: 5 Meter Hill-Shaded Along-Track 339° TIFF with TWF 5 Meter Hill-Shaded Cross-Track 249° TIFF with TWF Side-Scan TIFF Image: 5 Meter Imagery Mosaic TIFF with TWF Survey Report with Appendices: Southern Merrimack Embayment Multibeam Survey Report **Daily Reports** Watchstander Logs SVP Log Leadline Comparison Log Times of Hydrography

SAIC is delivering a hard-copy version of the following: Southern Merrimack Embayment Multibeam Survey Report Daily Reports Watchstander Logs SVP Log Leadline Comparison Log Time of Hydrography

5. ACKNOWLEDGMENTS

Science Applications International Corporation conducted this survey under contract to the United States Geological Survey and the University of New Hampshire. SAIC survey personnel were Pam Clark, Gary Davis, Paul Donaldson, Charles Key and Elizabeth Lobecker. Additional Data Processing personnel were Karen Hart, Rebecca Quintal and Deb Smith. Vessel Captain's were Fredrick Folsom, Steve Lunt and Dick Russell.

ATLANTIC HYDROGRAPHIC BRANCH EVALUATION REPORT

Project OSD-AHB-07 / Survey W00181 Southern Merrimack Embayment Multibeam Survey

SAIC Under contract to University of New Hampshire (Contract: 04-855) Prepared For: U.S. Geological Survey, Woods Hole, MA

This Evaluation Report has been written to supplement and/or clarify the original Survey Report, Outside Source Data Survey Acceptance Review (SAR), and Pre-Compile Processing Log.

A. <u>AREA SURVEYED</u>

The Atlantic Hydrographic Branch (AHB) has completed a survey acceptance review and evaluation of Outside Source Data (OSD) Survey W00181 of OSD-AHB-07. Survey W00181 was conducted by Science Applications International Corporation (SAIC), under contract to the University of New Hampshire to conduct a multibeam survey within the Southern Merrimack Embayment to support the requirements of the US Geological Survey, Woods Hole, MA. This survey acquired bathymetry and imagery with the Reson 8101 multibeam echo sounder on the R/V OceanExplorer operated by SAIC.

B. DATA ACQUISITION AND PROCESSING

B.1 DATA PROCESSING

The following software was used to process data at the Atlantic Hydrographic Branch:

CARIS HIPS/SIPS version 6.1 SP1 HF 1-9 CARIS Bathy Editor version 2.1 HF 1-4 DKART INSPECTOR, version 5.0 Build 732 SP1 CARIS HOM version 3.3 CARIS S57 Composer version 1.0

B.2. **QUALITY CONTROL**

H-Cells W00181_CS.000, W00181_SS.000, and W00181_Bluenotes.000 were created in CARIS Bathy Editor.

B.2.1. <u>H-Cell</u>

AHB created and finalized depth grids for the survey's H-Cells at two and four meter resolutions. The finalized grids were combined at four meter resolution, then using them to create a product surface grid with a resolution of eight meters. The survey scale selected soundings were extracted from the eight meter product surface. The selected sounding set is approximately 10 to 20 times the number of charted depths at the largest scale chart available scale of 1:20,000. The chart scale selected soundings are a subset of the survey scale selected soundings and sounding spacing is representative the appropriate largest scale in the area. The surface model was referenced when selecting

the chart scale soundings, to ensure that the selected soundings portrayed the bathymetry within the common area.

The pre-compilation products or components (Stand Alone HOB files (SAHOB)) are detailed in the Pre-Compile Process Log attached at the end of this document. The SAHOB files included sounding selections (SOUNDG), Wrecks (WRECK), Obstruction (OBSTRN), Sea Bed Areas (SBDARE), Meta objects (M_COVR, M_QUAL), and cartographic Blue Notes. The individual SAHOB files were inserted into one BASE Manager feature layer and exported to S57 format in order to create the H-Cell deliverable.

The completed H-Cell was exported as an H-Cell File (ENC.000) in S-57 format with all values in metric units. The metric equivalent ENC.000 file was then converted to NOAA chart units (ENC_CU.000) with all values measured in feet following NOAA sounding rounding rules.

Chart compilation was performed by Atlantic Hydrographic Branch personnel in Norfolk, Virginia. Compilation data will be forwarded to Marine Chart Division, Silver Spring, Maryland.

The W00181 CARIS H-Cell final deliverables include the following products:

US400181_CS.000	1:20,000 Scale	W00181 H-Cell with Chart Scale Selected Soundings
US400181_SS.000	1:40,000 Scale	W00181 Selected Soundings (Survey Scale)
US400181_Bluenotes.000	1:20,000 Scale	W00181 Cartographic Notes & Compilation Scales

B.2.2. Junctions

W00181 junctions with combined surveys W00050-53 (Jeffery's Ledge) of 1996 to the east. Present survey soundings compare within zero to four feet with the junction surveys. Present survey depths are in harmony with the charted hydrography to the north, south, and west. W00181 data is more recent and should be used to supersede common depth areas of surveys W00050-53.

C. VERTICAL AND HORIZONTAL CONTROL

Preliminary unverified water level correction processing with adequate tidal zoning was completed by SAIC personnel. Atlantic Hydrographic Branch personnel conducted comparisons between preliminary unverified water levels and verified water levels. On the days and times of survey and no differences were found. Therefore, no additional processing was required by AHB personnel. Sounding datum is Mean Lower Low Water (MLLW). Vertical datum is Mean High Water (MHW). Additional V&HC information is located in the SAIC Southern Merrimack Embayment Multibeam Survey Report. Horizontal control used for this survey during data acquisition is based upon the North American Datum of 1983 (NAD83), UTM projection zone 17. Office ENC processing of this survey required translating the datum to meet S-57 ENC requirements.

D. <u>RESULTS AND RECOMMENDATIONS</u>

D.1 <u>CHART COMPARISON</u>

13279, edition 32, 20070201 Scale 1:20,000

13282, edition 11, 200704 Scale 1:20,000

13274, edition 27, 200706 Scale 1:40,000

13278, edition 26, 20050601 Scale 1:80,000

ENC Comparison

<u>US4MA04M.000</u> Portsmouth to Cape Ann Edition 8 Update Application Date 2006-12-13 Issue Date 2007-12-10 References: Chart 13278

D.1.1 <u>Hydrography</u>

The charted hydrography originates with prior surveys and requires no further consideration.

During H-Cell processing the following items were addressed and exist within W00181_CS.000:

Quantity	Feature	Source
694	SOUNDG	New from survey
21	"point feature" SBDARE	Retained as charted
12	"rocky areas" SBDARE	New from survey
3	WRECKS	Retained as charted
1	OBSTRN	Retained as charted

D.2. ADDITIONAL RESULTS

D.2.1. Aids to Navigation

No aids were positioned by the field.

D.3. MISCELLANEOUS

Chart compilation was done by Atlantic Hydrographic Branch personnel, in Norfolk, Virginia. Compilation data will be forwarded to Marine Chart Division, Silver Spring, Maryland. See Section D.1. of this report for a list of the Raster Charts and Electronic Navigation Charts (ENC) used for compiling the present survey:

D.4. ADEQUACY OF SURVEY

The present OSD survey is adequate to supersede the charted bathymetry within the common area. <u>It is important to note that Survey W00181 was not acquired to</u> <u>facilitate feature disproval; therefore, all wreck and obstruction features should be</u> <u>retained as charted.</u>

AHB PRE-COMPILATION PROCESS

REGISTRY No.	W00181
PROJECT No.	OSD-AHB-07
FIELD UNIT	SAIC OCEAN EXPLORER
PRE-COMPILER	Bridget Williams
LARGEST SCALE CHART	13279, edition 32, 20070201
	13282, edition 11, 200704
	13274, edition 27, 200706
	13278, edition 26, 20050601
CHART SCALE	1:20000
	1:20000
	1:40000
	1:80000
SURVEY SCALE	1:20000
DATE OF SURVEY	20040316
CONTENT REVIEW DATE	02/07/08 13.00-14.00

Component	File Name
Product Surface Creation	PS_W00181_20k_200mrad_8mres.hns
Shifted Surface	PS_W00181_20k_200mrad_12mres_Shifted.hns
Contour Layer	PS_W00181_20k_200mrad_12mres_Contours.hob
Survey Scale Soundings	W00181_SS_Soundings.hob
Chart Scale Soundings	W00181_CU_Soundings.hob
Feature Layer	W00181_Features.hob
Meta-Objects Layer	W00181_MetaObjects.hob
Blue Notes	W00181_BlueNotes.hob

SPECIFICATIONS:

- I. COMBINED SURFACE:
 - a. File name: <u>W00181_AHB_4m_Combined.hns</u>
 - b. Resolution: <u>4</u> m
- II. PRODUCT SURFACE (SOUNDINGS):
 - a. Scale: 1:20000
 - b. Radius: 200m
 - c. Resolution: <u>8</u>m
 - d. Depth
 - i. Minimum: <u>7.843</u>m
 - ii. Maximum: <u>91.283</u>m

PRODUCT SURFACE (CONTOURS):

- a. Scale: 1:20000
- b. Radius: 200m
- c. Resolution: <u>12</u>m
- d. Interpolated Surface:
 - a. PS_W00181_20k_200mrad_12mres_Interp

- b. 5x5, neighbors: 6
- c. Contours: W00181_20k_200mrad_12mres_Interp_Contours
- III. SHIFTED SURFACE:
 - a. Single Shift Value: -.229 [-0.229m (feet) / -1.372m (fathoms)]
- IV. CONTOUR LAYER:
 - a. Use a Depth List: W00181_NOAA_depth_curves_list
 - b. Output Options:
 - i. Create contour lines:
 - 1. Line Object: DEPCNT
 - 2. Value Attribute: VALDCO
- V. SOUNDING SELECTION:
 - a. Selection Criteria:
 - i. Radius
 - ii. Shoal biased
 - iii. Use Single-Defined Radius: 60.00 distance on ground (m)
 - iv. Filter: Generalized !=1
- VI. FEATURES:
 - a. Brought in from Survey
 - Total No. 25
 - b. Brought in from ENC ENC: US4MA04M
 - Total No. 12
- VII. META-OBJECTS:

M COVD attailant

a. M_COVR attributes	
Acronym	Value
CATCOV	1 coverage available
INFORM	W00181
SORDAT	20040316
SORIND	US,US,survy,W00181
b. M_QUAL attributes	
Acronym	Value
CATZOC	A2
INFORM	W00181, OSD-AHB-07, SAIC R/V Ocean
	Explorer
POSACC	10
SORIND	US,US,survy,W00181
SORDAT	20040316
SUREND	20040316
SURSTA	20040218
c. M_CSCL attributes	
Acronym	Value
CSCALE	20000
INFORM	W00181
SORDAT	20040316
SORIND	US,US,Chart,13279,ed.32, 20070201
borta (b	
Acronym	Value
Acronym	Value

SORIND

SORIND

US,US,Chart,13274,ed.27, 200706

US,US,Chart,13278,ed.26, 20050601

Acronym	Value
CSCALE	20000
INFORM	W00181
SORDAT	20040316
SORIND	US,US,Chart,13282,ed.11, 200304
Acronym	Value
Acronym CSCALE	Value 20000
ل ل	

VIII. NOTES:

Field sheets were opened in Hips & Sips; soundings were designated in rocky areas prior to finalizing. Charted features were examined in Base by boosting the range within the standard deviation layer, and in Hips & Sips through sidescan and sidescan mosaics.

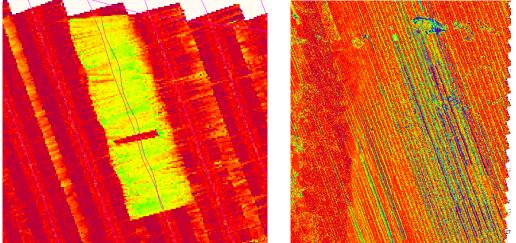


Figure 1. Standard deviation child layer of W00181.

These two were the worst areas of standard deviation, and can be accepted within the IHO order 1.

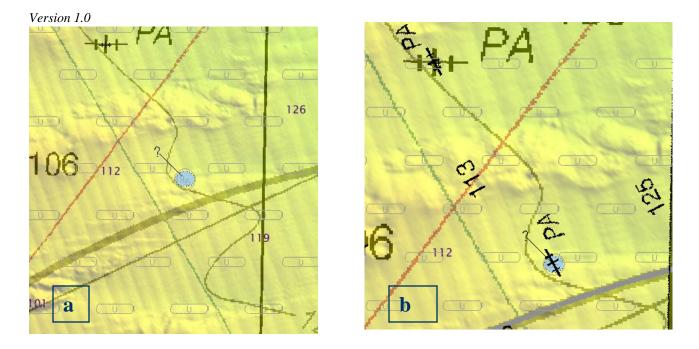


Figure 2. Wreck brought in from ENC, feature is not charted on Chart 13278, edition 26, 20050601(a). The same feature is located on Chart 13274, edition 27, 200706(b).

Figure 2 depicts a wreck that is not charted on 13278, it is found on Chart 13274; the latter chart is at a 1:40000 scale.

APPROVAL SHEET W00181

Initial Approvals:

The completed survey has been inspected with regard to survey coverage, delineation of depth curves, representation of critical depths, cartographic symbolization, and verification or disproval of charted data. All revisions and additions made to the H-Cell files during survey processing have been entered in the digital data for this survey. The survey records and digital data comply with National Ocean Service and Office of Coast Survey requirements except where noted in the Descriptive Report and the Evaluation Report.

All final products have undergone a comprehensive reviews per the Hydrographic surveys Division Office Processing Manual and are verified to be accurate and complete except where noted.

Bridget Williams Hydrographic Intern Atlantic Hydrographic Branch

Edward A. Owens Physical scientist Atlantic Hydrographic Branch

I have reviewed the H-Cell files, accompanying data, and reports. This survey and accompanying Marine Chart Division deliverables meet National Ocean Service requirements and standards for products in support of nautical charting except where noted.

Approved: ____

Shepard Smith Lieutenant Commander, NOAA Chief, Atlantic Hydrographic Branch