National	U.S. Department of Commerce Oceanic and Atmospheric Administration National Ocean Survey
]	DESCRIPTIVE REPORT
Type of Survey:	Navigable Area
Registry Number:	H12601
	LOCALITY
State(s):	New York
General Locality:	Vicinity of Southern Long Island
Sub-locality:	Vicinity of Shinnecock Inlet
	2013
	CHIEF OF PARTY Ransom C. White III
	LIBRARY & ARCHIVES
Date:	

NATIO	U.S. DEPARTMENT OF COMMERCE NAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRAPHIC TITLE SHEETH12601			
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.			
State(s):	New York		
General Locality:	Vicinity of Southern Long Island		
Sub-Locality:	Vicinity of Shinnecock Inlet		
Scale:	20000		
Dates of Survey:	10/11/2013 to 02/12/2014	10/11/2013 to 02/12/2014	
Instructions Dated:	06/27/2013	06/27/2013	
Project Number:	OPR-C331-KR-13		
Field Unit:	Williamson & Associates, Inc.		
Chief of Party:	Ransom C. White III		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	Side Scan Sonar		
Verification by:	Pacific Hydrographic Branch		
Soundings Acquired in:	meters at Mean Lower Low Water		

Remarks:

The purpose of this survey is to provide contemporary surveys to update National Ocean Service (NOS) nautical charts. All separates are filed with the hydrographic data. Notes in red were generated during office processing. The processing branch concurs with all information and recommendations in the DR unless otherwise noted. Page numbering may be interrupted or non-sequential. All pertinent records for this survey, including the Descriptive Report, are archived at the National Geophysical Data Center (NGDC) and can be retrieved via http://www.ngdc.noaa.gov/.

Table of Contents

. <u>30</u>
. <u>30</u>
31
.31
.31
.31
. <u>32</u>
. <u>32</u>
32
32
.33
. 34

List of Tables

Table 1: Survey Limits	1
Table 2: Hydrographic Survey Statistics	
Table 3: Dates of Hydrography	9
Table 4: Vessels Used	
Table 5: Major Systems Used	13
Table 6: Survey Specific Tide TPU Values.	
Table 7: Survey Specific Sound Speed TPU Values	
Table 8: Calibrations not discussed in the DAPR	
Table 9: Submitted Surfaces	
Table 10: NWLON Tide Stations.	
Table 11: Water Level Files (.tid).	
Table 12: Tide Correctors (.zdf or .tc).	
Table 13: USCG DGPS Stations.	
Table 14: Largest Scale Raster Charts	
Table 15: Largest Scale ENCs.	

List of Figures

Figure 1: H12601 Sheet Boundaries Overlaid on Chart 12352.	. 2
Figure 2: H12601 SSS Mosaic of all Data Acquired Overlaid on Chart 12352	
Figure 3: H12601 SSS Coverage Depicting percent of coverage: Yellow = 100%, Cyan = 200%	
Figure 4: H12601 MBES Coverage Overlaid on Chart 12352.	
Figure 5: M/V Nooit Volmaakt from the port side. The pole mount on the bow for the Edge Tech SSS can	
be seen.	11
Figure 6: M/V Nooit Volmaakt from the starboard bow. The pole mount on the bow for the Edge Tech SSS	<u>.</u>
can be seen.	12
Figure 7: Overhead view of the western area of H12601 showing chart 12352. The area of shifting bathy	
shown in the following figures is highlighted by the green box	6

Figure 8: Overhead view showing the area within the green box highlighted in the previous figure with the
MBES data overlaid with chart 12352. The area shown in the following figures is highlighted by the red box
with the direction of view represented by the red carrot
Figure 9: 2D view of shifting sand features, the purple line was acquired on Julian Day 009 while the green
line was acquired on Julian Day 030, a 21 day separation
Figure 10: 3D view of shifting sand features, showing the depths for each line. Each horizontal grid line
represents 20cm.
Figure 11: Chart 12352 overlaid with MBES data. The red circle highlights the area where no navigable
depth was found. The green circle highlights the area where a charted land area no longer exists and is now
partially navigable
Figure 12: Overhead view of Chart 12352 overlaid with AWOIS search radius for items 15108, 15109, and
15110; and the associated contact locations for H12601
Figure 13: Overhead view of Chart 12352 overlaid with AWOIS search radius for item 7943; and the
associated contact locations for H12601
Figure 14: Multibeam image showing the wreck that is believed to be AWOIS # 7943
Figure 15: Overhead image of fish haven within H12601 showing offset of charted bounding box and actual
location of debris
Figure 16: Chart US5NY52M overlaid with MBES data. Areas of shoreline shift are highlighted within the
green circles
Figure 17: Image showing chart 12352. The red circles highlight the area where the seabed has been scoured
from beneath the pipeline/cable

Descriptive Report to Accompany Survey H12601

Project: OPR-C331-KR-13 Locality: Vicinity of Southern Long Island Sublocality: Vicinity of Shinnecock Inlet Scale: 1:20000 October 2013 - February 2014 **Williamson & Associates, Inc.** Chief of Party: Ransom C. White III

A. Area Surveyed

Williamson & Associates, Inc. conducted a hydrographic survey in the southern waters off of Long Island, NY. The sub-locality of this survey is described as Vicinity of Shinnecock Inlet.

The survey encompassed an area of approximately 13 square nautical miles and was assigned registry number H12601. Project instructions required object detection coverage in 2-4 meters of water with 100% SSS and concurrent MBES and backscatter. Object detection coverage was required as well in 4-20 meters of water with 200% SSS and concurrent MBES and backscatter. Complete MBES and backscatter were the only requirements in water depths greater than 20 meters.

It should be noted that the appendices and separates for this report were created using the XML Schema format from XMLDR v13.1 released in June 2013 and will not follow the layout described in HSSD 2012. This was approved through email correspondence with our COTR on 4/10/2013, see correspondence in Appendix II.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
40° 51' 23.02" N	40° 46' 29.03" N
72° 25' 0.76" W	72° 31' 6.29" W

Table 1: Survey Limits

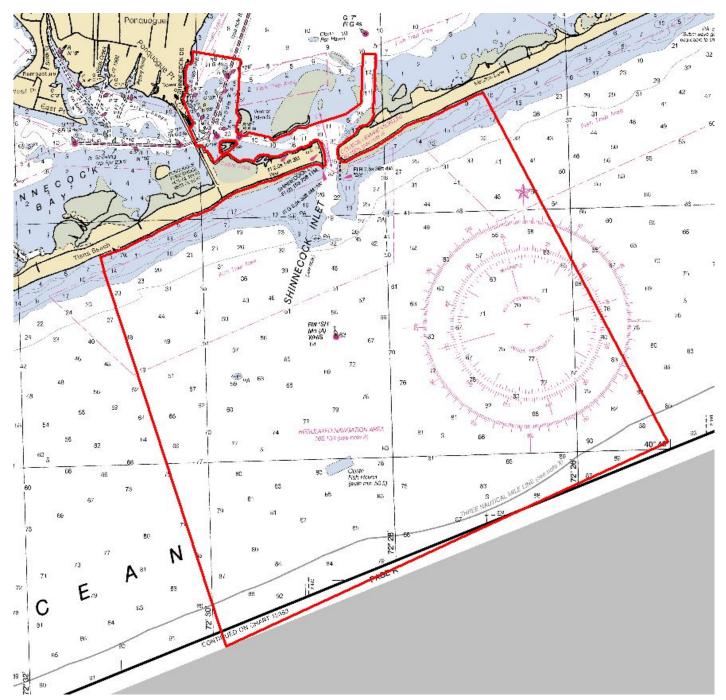


Figure 1: H12601 Sheet Boundaries Overlaid on Chart 12352 The coverage requirement for the 2-4m depth range was revised to 100% SSS with concurrent set line spacing SBES or MBES and backscatter.

Survey Limits were acquired in accordance with the requirements in the Project Instructions and the HSSD.

A.2 Survey Purpose

As per the project instructions: The purpose of this project is to provide contemporary surveys to update National Ocean Service (NOS) nautical charting products. This project is in response to different user group needs following Hurricane Sandy landfall. Specifically these data will adjoin updated shoreline, address the need for updated bathymetry for inundation modeling, and help identify marine debris for potential removal.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Survey quality was reviewed mainly by utilizing daily checks for data matchup, swath density, and motion/ refraction artifacts. Sounding density was found to meet or exceed the object detection and single line spacing requirements out to roughly 40-45 degrees from nadir which was deemed acceptable given that our requirements called for skunk stripe MBES as a gap filler for 100% and 200% SSS. A full MBES coverage plan would include at least a 20% swath overlap, which is not possible with a set line spacing. Motion artifacts, when found, were due to excessive weather conditions. Latency values were checked and the motion artifacts were measured. The majority of motion artifacts found fell under our IHO Order 1a error budget and were located well offshore in easily navigable waters. Considering the consistently poor working conditions during the winter months, motion artifacts became somewhat frequent, however they posed little threat to the usefulness of the data as expected vessel traffic in the area consists of no vessels that draw more than 2-3 meters.

In-depth crossline comparisons were performed. The results of the crossline comparison can be found in section B.2.1 of this report. The crossline comparisons consisted of analyzing each individual crossline with the finalized CUBE surface using the CARIS surface report tool. Once a CARIS surface report was generated, the results were inserted into a spreadsheet for total calculations of the survey area. The surface report informs the user of the percentage of soundings across the swath in increments set by the user that fall within the desired IHO specifications, in our case 10 degree increments, within IHO Order 1a. Areas that did not pass the IHO order 1a specification were due to shifting bathy near the inlets and can be reviewed in section B.2.6 of this report.

Survey quality is acceptable to supersede previous bathymetric, shoreline, overhead and submerged feature data within the project bounds.

A.4 Survey Coverage

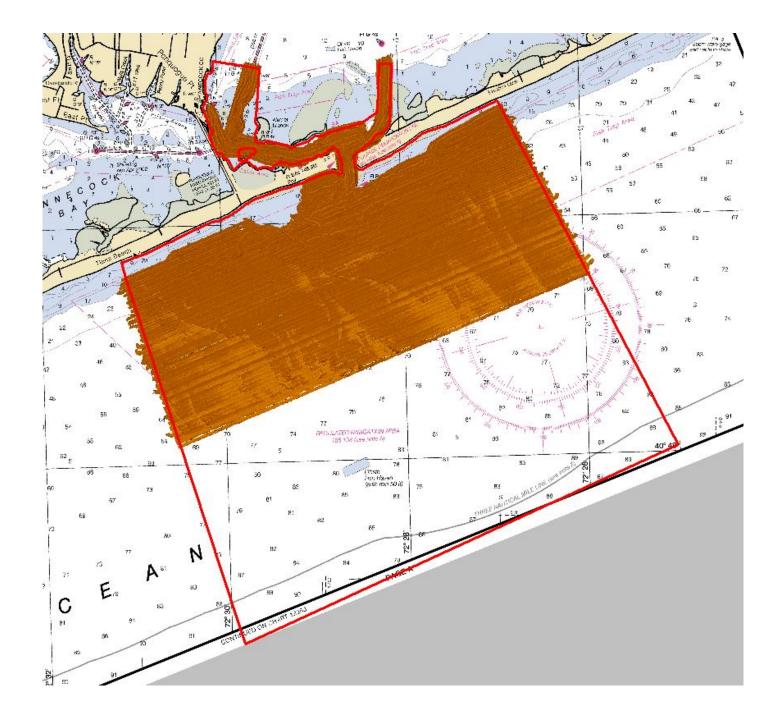
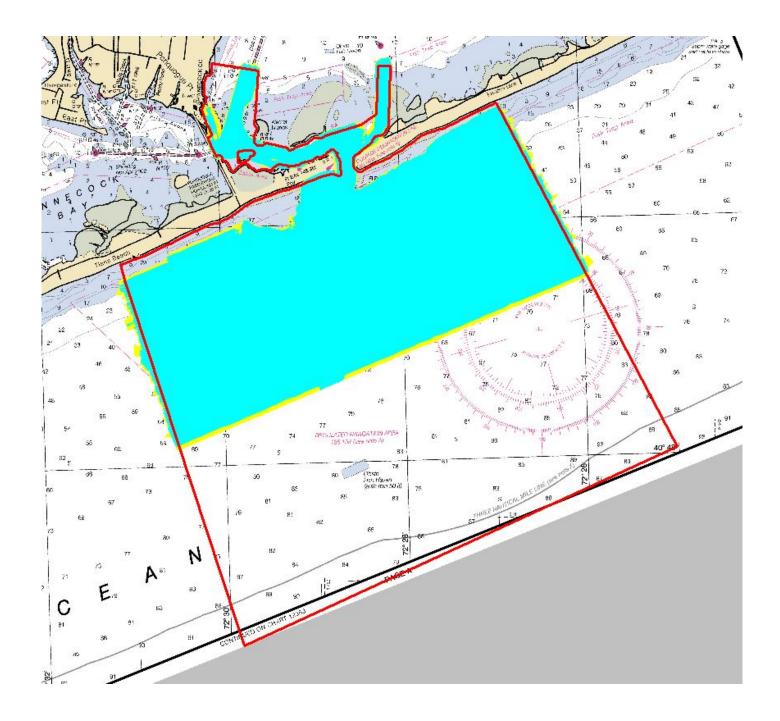
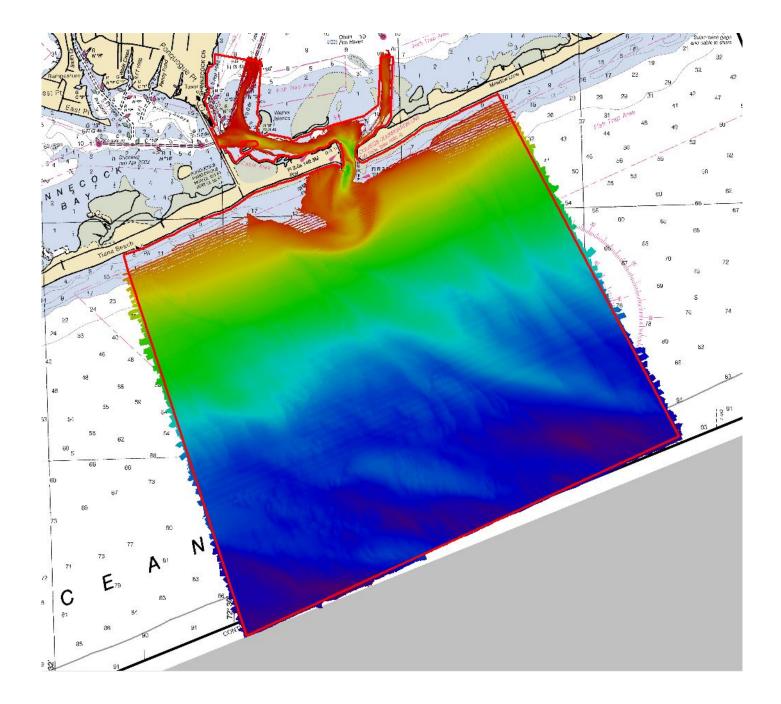




Figure 2: H12601 SSS Mosaic of all Data Acquired Overlaid on Chart 12352

Figure 3: H12601 SSS Coverage Depicting percent of coverage: Yellow = 100%, Cyan = 200%

Figure 4: H12601 MBES Coverage Overlaid on Chart 12352

Due to changing morphology and a combination of shoal and swell conditions, coverage gaps are present in SSS data. Vessel and crew safety is a priority and was always taken into consideration. There are six coverage gaps located on this sheet. A coverage gap is present along the beach near Shinnecock Inlet, due to shoal conditions and shallow waters. Another gap is located east of Ponquogue Point as a result of a shoal area. An additional gap is located northwest of the Inlet due to the presence of a raft of dredge pipe. There are three smaller coverage gaps present north of the inlet, all of which are due to shifting morphology and shoals. Please refer to section D.1.3 "AWOIS Items" fro information on survey coverage gaps.

It should be noted that during initial acquisition the survey line plan used was designed to obtain full multibeam coverage in shoal water depths. A new survey line plan was set in place on October 23rd containing line spacing to result in 200% SSS coverage with skunk stripe MBES. The line plan was implemented on October 25th and was confirmed by the COTR via email on October 30th. Please refer to Appendix II of this report for email communications.

The email correspondence is attached.

A.5 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID H	EW46077J2	70 T otal
	SBES Mainscheme	0	0
LNM	MBES Mainscheme	201.25	201.25
	Lidar Mainscheme	0	0
	SSS Mainscheme	0	0
	SBES/SSS Mainscheme	0	0
	MBES/SSS Mainscheme	327.19	327.19
	SBES/MBES Crosslines	19.76	19.76
	Lidar Crosslines	0	0
Numb Bottor	er of n Samples		10
	er of AWOIS Investigated		4
	er Maritime lary Points igated		0
Number of DPs			0
	er of Items igated by Dps		0
Total S	SNM		12.37

Table 2: Hydrographic Survey Statistics

Survey Dates	Day of the Year
10/11/2013	284
10/12/2013	285
10/14/2013	287
10/15/2013	288
10/17/2013	290
10/23/2013	296
11/02/2013	306
11/11/2013	315
12/08/2013	342
12/10/2013	344
01/09/2014	9
01/10/2014	10
01/15/2014	15
01/16/2014	16
01/17/2014	17
01/21/2014	21
01/29/2014	29
01/30/2014	30
02/01/2014	32
02/02/2014	33
02/04/2014	35
02/06/2014	37
02/08/2014	39
02/09/2014	40
02/11/2014	42
02/12/2014	43

The following table lists the specific dates of data acquisition for this survey:

Table 3: Dates of Hydrography

The survey statistics were changed to report accurate values calculated during office review.

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull IDHEW46077J70		8
LOA	7.32 meters	
Draft	1.2 meters	

Table 4: Vessels Used

Figure 5: M/V Nooit Volmaakt from the port side. The pole mount on the bow for the Edge Tech SSS can be seen.

Figure 6: *M/V* Nooit Volmaakt from the starboard bow. The pole mount on the bow for the Edge Tech SSS can be seen.

B.1.2 Equipment

Manufacturer	Model	Туре
R2Sonic	2024	MBES
EdgeTech	4600	SSS
Applanix	POS MV 320	Positioning and Attitude System
Valeport	MiniSVS	Sound Speed System
SeaBird	SBE19	Conductivity, Temperature and Depth Sensor
SeaBird	SBE19+	Conductivity, Temperature and Depth Sensor

The following major systems were used for data acquisition during this survey:

The M/V Nooit Volmaakt acquired all multibeam data with a pole mounted R2Sonic 2024 at 400kHz and a pole mounted EdgeTech 4600 at 540 kHz using a POSMV for position, orientation and motion corrections. For more detailed information on equipment and vessel please refer to OPR-C331-KR-13 DAPR submitted under a different cover.

B.2 Quality Control

B.2.1 Crosslines

Crosslines acquired for this survey totaled 4% of mainscheme acquisition.

Quality control crosslines were planned so that most main scheme lines would intersect with at least one crossline, they were well distributed geographically, and that total crossline nautical miles ran would total more than 4 % of the main scheme nautical miles (a specification set forth by the HSSD 2012). Our quantification of required crossline distance in this sheet was complicated by a change in our line plan to a set line spacing from full MBES coverage, causing skunk striping in the shallower areas. Survey that had taken place prior to the line plan change caused there to be far more line miles of data than what the new line plan called for. The quantification for line miles of crosslines was based on the new line plan, which had fewer lines. Therefore, the percentage of crosslines to total main line mileage will appear to be less than what was required, however, the true percentage should be determined as described above.

Table 5: Major Systems Used

Total crossline length surveyed for task order OPR-C331-KR-13 sheet H12601 was 21.42 nautical miles or 4.43% of the total main scheme distance (483.27 nautical miles). All crosslines were compared to the main scheme line CUBE, using the CARIS HIPS QC Report process for individual lines. The swath was split by swath angles in 10 degree increments for the crossline analysis. The seabed near the inlet was so dynamic, being current driven, that it changed significantly from day to day. Two crosslines obtained near the inlet failed to meet the standards set forth by the HSSD (more information can be found in section B.2.6, Factors Affecting Soundings). These lines were deemed unacceptable due to seabed shift and not used resulting in a crossline mileage of 4.29% of the main scheme lines. Without these outliers included in the average the vast majority of beams passed within the IHO Order 1a specifications at a 95% confidence level or better with an overall confidence level average of 99.82% and a standard deviation of 0.57%. (See Separate II). Lines that covered both the 50cm (0-20m water depth) and the 2m (18-40m water depth) surfaces were analyzed independently for each surface.

Crosslines totaled 19.76 LNM which equaled 3.87% of the mainscheme mileage.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Measured	Zoning
0 meters	0.1504 meters

Table 6: Survey Specific Tide TPU Values

Hull ID	Measured - CTD	Measured - MVP	Surface
HEW46077J708	1.5 meters/second		0.2 meters/second

Table 7: Survey Specific Sound Speed TPU Values

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of the uncertainty values used for processing sheet H12601.

Tidal uncertainty values reported by JOA Surveys at the 95% confidence level was 0.295m and includes the estimated gauge measurement error, tidal datum computation error and tidal zoning error. The reported error value was then divided by 1.96 because CARIS assumes TPU values to be 1 sigma (Field Procedures Manual April 2013) resulting in a value of 0.15m. The tidal uncertainty field labeled in CARIS as "measured" was left at zero as the reported error value of 0.295m included the estimated gauge measurement error and the tidal datum computation error as well as the tidal zoning error. Any max uncertainty measurements exceeding IHO Order 1a specifications are due to shifting sand bars and seabed morphology and are explained in section B.2.6 (Factors Affecting Soundings).

B.2.3 Junctions

There are no contemporary surveys that junction with this survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

Motion Correction System

B.2.5.2 POS MV 320. The POS MV 320 functioned adequately throughout the survey. The average sea state during the majority of survey days was a 1m swell. Depending on the direction of the swell, some attitude artifacting resulted, mostly in deeper areas of the survey. These lines were not rejected as no latency was found to exist and QC showed the lines to still be within spec using cross-line analysis. This was concluded to be the result of a small survey vessel in large enough seas to challenge the accuracy of the IMU.

B.2.5.3 On Julian Day 306 (November 2nd), there was a software problem caused by a Windows firewall issue. When the system was rebooted, the POS MV was not restarted, causing eight lines to be surveyed in Shinnecock Bay without a POS MV heave input. The waters were calm and the data was not compromised so the lines were used.

B.2.6 Factors Affecting Soundings

Shifting Sand Waves / Bars / Features

Sand features in waters more shoal than 10 meters are constantly shifting, as much as 25cm per day in some areas. Areas concentrated around the inlet are subject to the strongest and most rapid tidal currents, as a result these areas experience the most morphological shifting resulting in poor data alignment, especially if overlapping acquisition was separated by as much as 5-10 days. Due to this effect on the data overlapping, the timing of acquisition was strongly considered in planning.

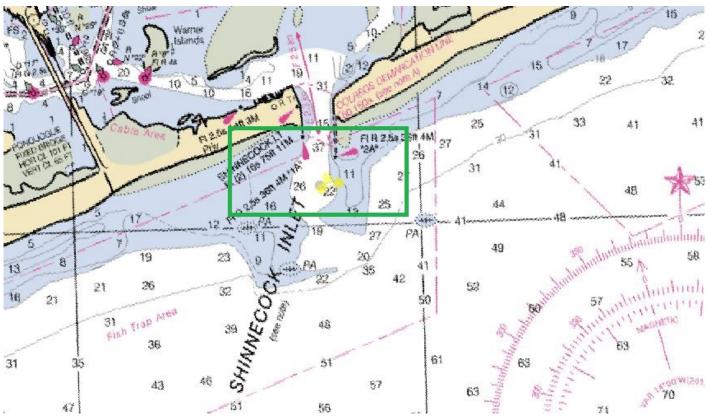


Figure 7: Overhead view of the western area of H12601 showing chart 12352. The area of shifting bathy shown in the following figures is highlighted by the green box.

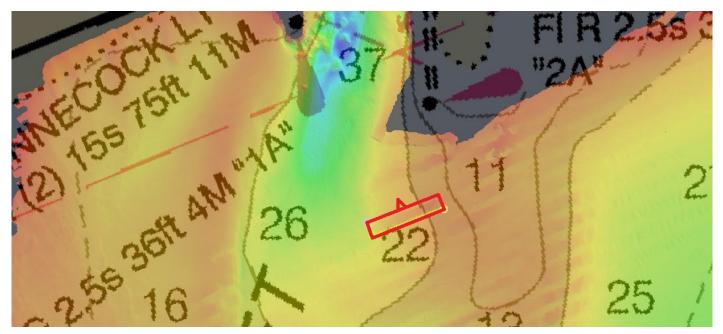


Figure 8: Overhead view showing the area within the green box highlighted in the previous figure with the MBES data overlaid with chart 12352. The area shown in the following figures is highlighted by the red box with the direction of view represented by the red carrot.



Figure 9: 2D view of shifting sand features, the purple line was acquired on Julian Day 009 while the green line was acquired on Julian Day 030, a 21 day separation.

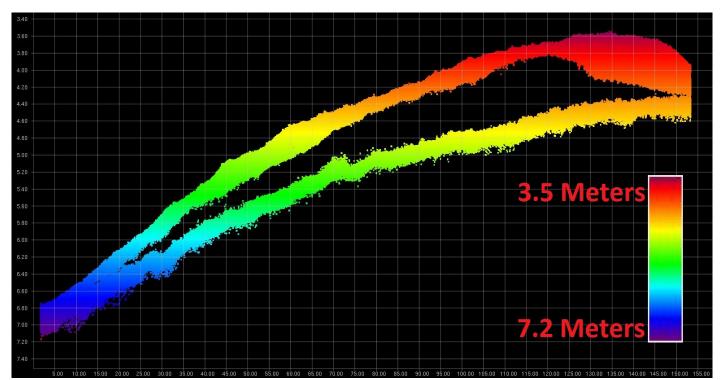


Figure 10: 3D view of shifting sand features, showing the depths for each line. Each horizontal grid line represents 20cm.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: 4 hours

A Sea-Bird CTD was used every 2-4 hours depending on variation in the surface sound velocity was. As per the HSSD casts were taken if the surface sound velocity changed by more than 2 m/s. Two Sea-Bird CTDs were used aboard the survey vessel, a SBE 19 and SBE 19+.

Sound Velocity was close to homogeneous from day to day. No significant sound velocity errors were encountered.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

The following calibrations were conducted after the initial system calibration discussed in the DAPR:

Calibration Type	Date	Reason
MBES	2013-10-02	Vessel ran sensor aground on Sand Bar.
MBES	2013-10-06	Vessel ran sensor aground on Sand Bar.
MBES	2013-10-15	Vessel ran sensor aground on Sand Bar.
MBES	2013-10-18	Vessel ran sensor aground on Sand Bar.
MBES	2013-11-05	Vessel ran sensor aground on Sand Bar.
MBES	2013-11-11	Vessel ran sensor hard aground on Sand Bar.
MBES	2014-01-04	Vessel ran sensor aground on Sand Bar.

Table 8: Calibrations not discussed in the DAPR.

Multiple calibration patch tests were conducted for the MBES system after the initial calibration. These were conducted to account for small shifts in the mounting flange. No resulting issues were found to adversely affect the data.

B.4 Backscatter

Backscatter was converted to HDCS file format and is included with the data submitted to the Branch.

B.5 Data Processing

B.5.1 Software Updates

There were no software configuration changes after the DAPR was submitted.

The following Feature Object Catalog was used: 5.2

There were no software configuration changes after the DAPR was submitted.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H12601_West_MB_50cm_MLLW_Final	CUBE	0.5 meters	0 meters - 20 meters	NOAA_0.5m	Object Detection
H12601_Central_MB_50cm_MLLW_Final	CUBE	0.5 meters	0 meters - 20 meters	NOAA_0.5m	Object Detection
H12601_East_MB_50cm_MLLW_Final	CUBE	0.5 meters	0 meters - 20 meters	NOAA_0.5m	Object Detection
H12601_MB_2m_MLLW_Final	CUBE	2 meters	18 meters - 30 meters	NOAA_2m	Complete MBES
H12601_AWOIS_7943_MB_50cm_MLLW_Fina	ม CUBE	0.5 meters	15 meters - 19.79 meters	NOAA_0.5m	Object Detection
H12601_SSS_1m_100%_A	SSS Mosaic	1 meters	0 meters - 30 meters	N/A	100% SSS
H12601_SSS_1m_100%_B	SSS Mosaic	1 meters	0 meters - 30 meters	N/A	100% SSS

Table 9: Submitted Surfaces

As per the project instructions a 1m SSS mosaic resolution was used. The 200% SSS coverage was split into 100% coverage mosaics. The MBES data was gridded at 0.5 meters for water depths ranging between 0-20 meters, and gridded at 2 meters in water depths between 18-40m. Multiple 50cm surfaces were created in lieu of one large surface to reduce the file size and allow for quicker localized surface loading. Separate surfaces were created for the AWOIS areas that extended into water depths greater than 20m, as the required resolution for data at depths greater than 20m (2m resolution) differ from that required for AWOIS coverage (50cm resolution).

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

Standard Vertical Control Methods Used:

Discrete Zoning

The following National Water Level Observation Network (NWLON) stations served as datum control for this survey:

Station Name	Station ID
Ponquogue Point	8512451
Shinnecock Inlet Open Coast	8512354

Table 10: NWLON Tide Stations

File Name	Status
8512354.tid	Final Approved
8512451.tid	Final Approved

Table 11: Water Level Files (.tid)

File Name	Status
JOA-C331KR2013-SHINNECOCK BAY - 20140424.zdf	Final

Table 12: Tide Correctors (.zdf or .tc)

Two subordinate tide gages, 8512451 and 8512354 were installed for final use in sheet H12601. An auxiliary pressure gage was used just offshore of the inlet to aid in finalized zoning procedures. Staff observations were performed for gage 8512354 once per week for a 2 hour period weather permitting. Refer to Appendix I for tide notes.

The Validation of Zoning Memo is attached.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD83). Data were acquired in WGS84, as shown in the HVF, but were converted to NAD83 for processing and delivery. See DAPR A.3 and B.1.

The projection used for this project is 18N.

The following DGPS Stations were used for horizontal control:

DGPS Stations

Moriches, Broadcast Site ID: 803; Frequency 293kHz

Table 13: USCG DGPS Stations

D. Results and Recommendations

D.1 Chart Comparison

D.1.1 Raster Charts

The following are the largest scale raster charts, which cover the survey area:

Chart	Scale	Edition	Edition Date	LNM Date	NM Date
12352	1:40000	34	09/2012	04/16/2014	04/16/2014
12353	1:80000	19	11/2011	04/16/2014	04/16/2014

Table 14: Largest Scale Raster Charts

<u>12352</u>

H12601 survey data was compared to Raster Chart 12352. In general the area inshore of the inlet has undergone deepening ranging from 1-5 feet. The northwestern-most corner of the inshore area was found to have no navigable depth (see following figures). A charted foul land area just east of the Ponquogue Bridge was surveyed and found to be a partially navigable area (see following figures). Offshore of the inlet depths were found to be as charted with insignificant shifting of sand features being the only variable.

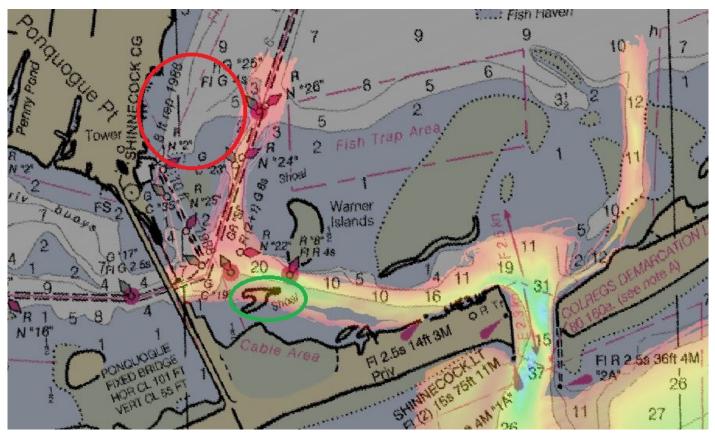


Figure 11: Chart 12352 overlaid with MBES data. The red circle highlights the area where no navigable depth was found. The green circle highlights the area where a charted land area no longer exists and is now partially navigable.

<u>12353</u>

Refer to the above discussion for chart 12353 comparison.

D.1.2 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date	Preliminary?
US4NY53M	1:20000	10	12/05/2012	03/27/2013	NO
US5NY52M	1:40000	10	12/27/2013	03/12/2013	NO

Table 15: Largest Scale ENCs

US4NY53M

H12601 survey data was compared to Electronic Charts US4NY53N. Results were very similar to the above comparisons with Raster Chart 12352. See discussion for Chart 12352 for chart comparison.

US5NY52M

H12601 survey data was compared to Electronic Charts US5NY52M. Results were very similar to the above comparisons with Raster Chart 12352. See discussion for Chart 12352 for chart comparison.

D.1.3 AWOIS Items

The four AWOIS items investigated were items 15108, 15109, 15110, and 7943. The search radii for items 15108 and 15109 contained one near significant feature within sheet H12601. The closest significant feature to AWOIS items 15108 and 15109 was located 212.4 meters at a 99° heading from the central AWOIS item location for 15108 and 349.1 meters at a 335° heading from the central AWOIS item location for 15109. The search radius for item 15108 contained three insignificant features; a possible wreck, a possible mast associated with the wreck, and partially buried linear debris. These contacts are most likely not AWOIS item 15108. The search area for item 15110 did not contain any significant features. The search area for item # 7943 contained one significant wreck within sheet H12601. This wreck was located 35.11 meters at a 132° heading from the central AWOIS item location for 7943. The dimensions are roughly 16.3 x 27.9 meters, sitting 2.6 meters off the bottom. The other contacts in this area are insignificant linear debris possibly associated with the wreck.

As discussed in section A.4 regarding shoal and swell conditions degrading survey data, there were some AWOIS items with nodes containing less than the required number of soundings. Seas did not always allow many passes over locations. We did achieve 200% SSS coverage in these areas and operated under the assumption that this would make up for small discrepancies of this nature.

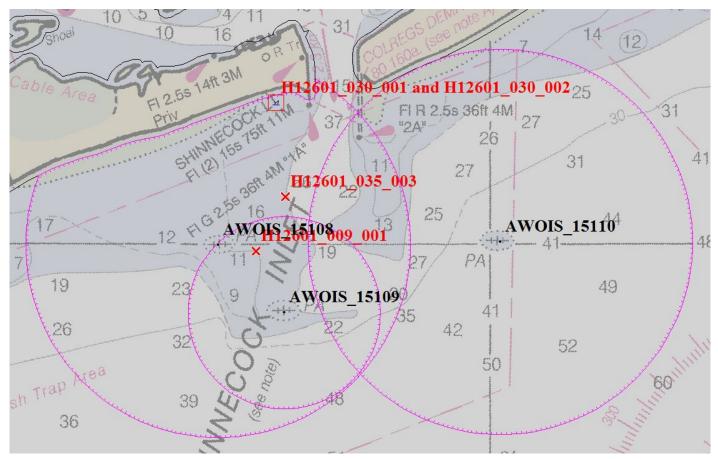


Figure 12: Overhead view of Chart 12352 overlaid with AWOIS search radius for items 15108, 15109, and 15110; and the associated contact locations for H12601.

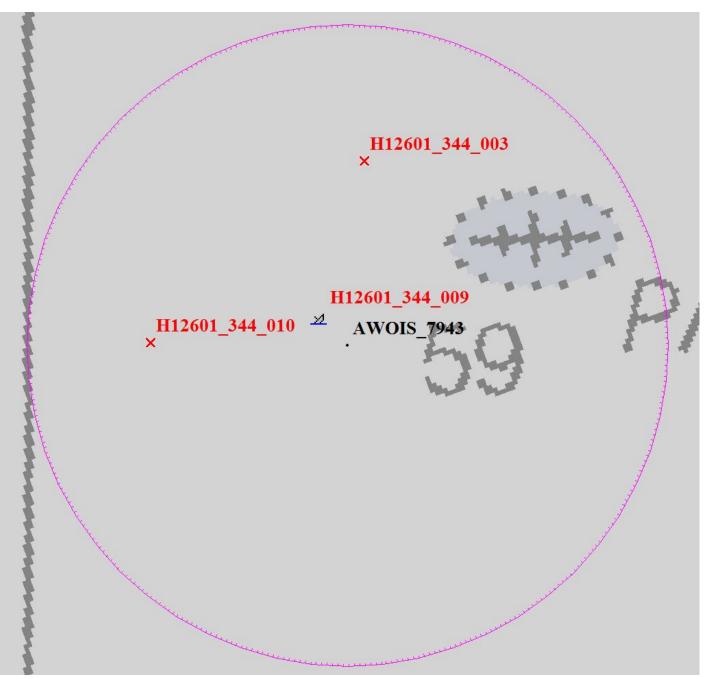
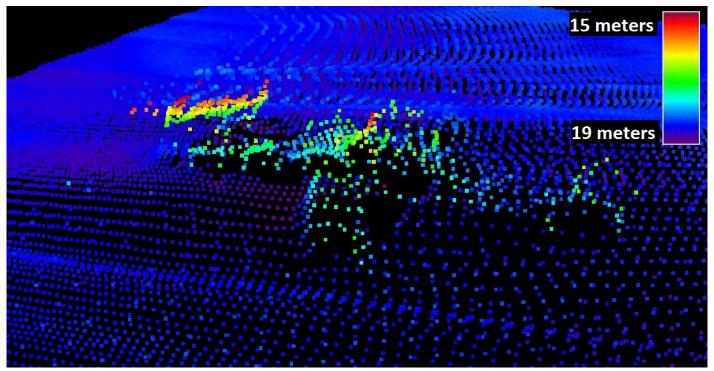
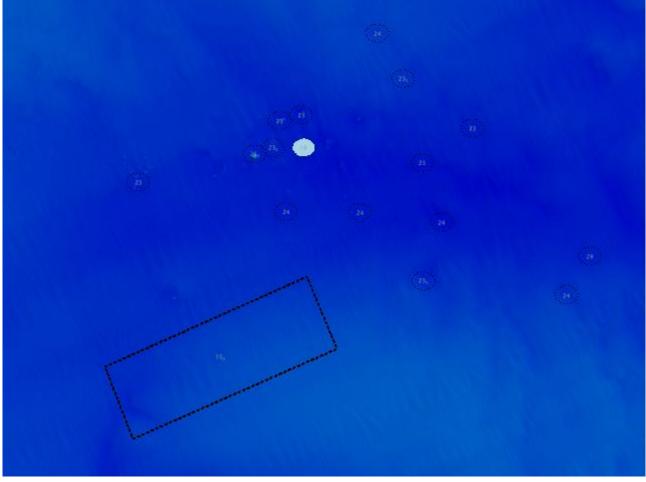



Figure 13: Overhead view of Chart 12352 overlaid with AWOIS search radius for item 7943; and the associated contact locations for H12601.

Figure 14: *Multibeam image showing the wreck that is believed to be AWOIS # 7943. See attached AWOIS and Wreck Report.*


D.1.4 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.1.5 Charted Features

H12601 contained five wrecks labeled PA and one fish haven, all flagged as assigned S-57 features.

Refer to AWOIS discussion for a description concerning charted wrecks within AWOIS areas 15108, 15109, 15110, and 7943. One wreck was not located within the bounds of an AWOIS search radius. This wreck is charted at 40-49-45.31N, 072-30-56.06W. This position was unsurveyable due to shoal depths, however as a shoreline feature any significant wreck would have been awash and visible from the survey vessel. No wreckage was found for this location from shore or satellite imagery. The charted fish haven bounding box is not located over the debris and is offset to the southwest by approximately 385 meters. The center of the fish haven box should be relocated to 40-48-08.49N, 072-28-31.40W.

Figure **15***: Overhead image of fish haven within H12601 showing offset of charted bounding box and actual location of debris.*

D.1.6 Uncharted Features

Seven uncharted features (four wrecks, two rocks, and one debris field) were found within H12601. The features reported here are considered significant as they sit more than one meter off bottom. All significant features are included in the H12601 Final Feature File included in the digital deliverables.

D.1.7 Dangers to Navigation

Danger to Navigation Reports are included in Appendix II of this report.

The DTONs noted were not reported to NOAA's Marine Chart Division. The features associated with the DTONs were addressed during office processing and included in the chart update product as appropriate.

D.1.8 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey.

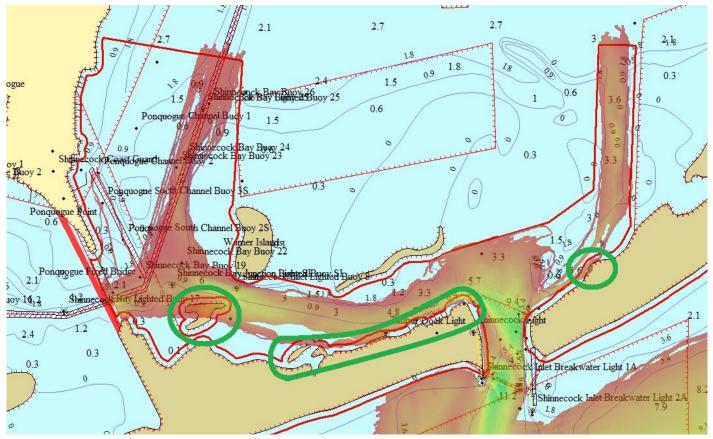
The entrance to Shinnecock inlet is a dynamic area with frequently changing depths.

D.1.9 Channels

The Channels inshore of the inlet have undergone a general deepening. The USCG channel has shoaled, especially northeast of the USCG station where water depths are unnavigable for most marine vessel traffic. Refer to Section D.1.1 Raster Charts.

D.1.10 Bottom Samples

Ten bottom samples were acquired.


D.2 Additional Results

D.2.1 Shoreline

Many slight shoreline differences are evident inshore of the inlet when compared to chart 12352. The shoreline shifts seen in this area do not present any immediate danger as the shoreline in these areas have been eroded landward to widen any channel that would have been affected. The most significant of these is the shift of the charted foul land area just east of the Ponquogue Point Bridge and is discussed in section D.1.1. Please refer to the figure below.

Sheet H12601 contains areas where the NALL requirements were not achieved. Any areas that were not satisfied were due to safety concerns with swell or sand bar impacts on the vessel. The sonar was grounded several times, so the crew became more cautious of shallow water as the survey continued. In some areas, however, survey coverage exceeded NALL because water depths were deeper than previously charted due to Sandy.

The area located near Shinnecock Inlet was drastically changed and proved to contain a number of new sand bars and shoal areas. The largest of unsatisfied NALL areas are located south of the inlet and run parallel to the shoreline. Another NALL area not surveyed is located northwest of the inlet. Both areas are a direct result of shallow water depths and shoal characteristics.

Figure **16***: Chart US5NY52M overlaid with MBES data. Areas of shoreline shift are highlighted within the green circles.*

D.2.2 Prior Surveys

No prior survey comparisons exist for this survey.

D.2.3 Aids to Navigation

Near the end of the acquisition period in sheet H12601, a green buoy was placed just offshore of the inlet. This buoy contained no light or horn and was not charted. For this reason it was submitted as a DTON. Refer to Appendix II for DTON submittal.

All other ATONS were found in place and serving their intended purpose.

The buoy was not submitted as a DTON. The buoy was reported to the Coast Guard during office processing.

D.2.4 Overhead Features

Overhead features do not exist for this survey.

D.2.5 Submarine Features

One pipeline/cable was found running parallel and just to the west of the Ponquogue Bridge. This pipeline/ cable was found to be within a charted cable crossing area however there was significant scouring of the seabed beneath. A distance of 1.4 meters was found between the bottom of the pipeline/cable and the sea floor in the central channel.

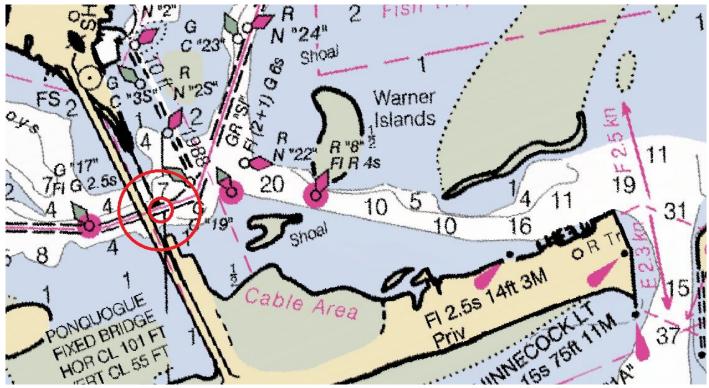


Figure 17: Image showing chart 12352. The red circles highlight the area where the seabed has been scoured from beneath the pipeline/cable.

D.2.6 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.7 Platforms

No platforms exist for this survey.

D.2.8 Significant Features

Significant features exist for this survey, and are discussed in the previous sections labeled "Charted Features" and "Uncharted Features" .

D.2.9 Construction and Dredging

There is no present or planned construction or dredging within the survey limits. However a dredge was anchored just west and inshore of the inlet. This did affect the vessel's survey route however coverage was achieved.

D.2.10 New Survey Recommendation

No new surveys or further investigations are recommended for this area.

D.2.11 Inset Recommendation

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys and Specifications Deliverables Manual, Field Procedures Manual, Standing and Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Ransom C. White III	Chief of Party	11/20/2014	PHH
Curtis Clement	Project Manager	11/20/2014	CHERT

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continually Operating Reference Staiton
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division
HSSD	Hydrographic Survey Specifications and Deliverables

Acronym	Definition
HSTP	Hydrographic Systems Technology Programs
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Local Notice to Mariners
LNM	Linear Nautical Miles
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NAIP	National Agriculture and Imagery Program
NALL	Navigable Area Limit Line
NM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
PST	Physical Science Technician
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
ТРЕ	Total Porpagated Error
TPU	Topside Processing Unit
USACE	United States Army Corps of Engineers
USCG	United Stated Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDA	Global Positiong System timing message
ZDF	Zone Definition File

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Center for Operational Oceanographic Products and Services Silver Spring, MD 20910

Date:	July 16, 2014	
TO:	LCDR Michael Gonsalves Chief, Operations Branch Hydrographic Services Division Office of Coast Survey	
FROM:	Gerald Hovis Chief, Products and Services Branch Oceanographic Division CO-OPS	HOVIS.GERA LD.THOMAS. 1365860250 Digitally signed by HOVIS.GERALD.THOMAS.136586025 DN: c=US, o=U.S. Government, ou=DoD, ou=PKI, ou=OTHER, o=HOVIS.GERALD.THOMAS.136586 0250 Date: 2014.07.17 10:03:37 -04'00'
RE:	Validation of Zoning supplied in suppor Long Island, NY	t of OPR-C331-KR-2013, Vicinity of Southern

John Oswald & Associates (JOA) submitted discrete tidal zoning for validation by CO-OPS based on subordinate water level data collected at Fire Island (851-5186), Moriches Inlet (851-3398), Moriches Coast Guard Station (851-3388), Shinnecock Inlet (851-2354), and Ponquogue Point (851-2451). CO-OPS finds the water level data as well as discrete zoning submitted in support of OPR-C331-KR-2013 to be valid and meet the requirements under NOS Specifications and Deliverables.

CO-OPS bases its validation of the contractor supplied zoning on the following reasons:

- 1. JOA's method to develop final zoning geometry and tide correctors is reasonable
- 2. The estimate of total propagated error within the survey area using JOA's final tidal zoning and provided zoning station water level data (BMPGs and Seaview Ferry (851-4779)) is within 0.26 meters.

CC: Jeff Ferguson Patrick Burke Michael Brown Matthew Jaskoski Castle "Gene" Parker LCDR Ben Evans Laura Rear McLaughlin Corey Allen Cristina Urizar Grant Froelich Colleen Fanelli

(no subject)

2 messages

Ransom White <ransom.white@gmail.com>

Mon, Oct 28, 2013 at 1:51 PM To: Megan Greenaway - NOAA Federal < Megan.Greenaway@noaa.gov>, Marc Moser < marc.s.moser@noaa.gov> Cc: Brian Bunge

bunge@wassoc.com>, Art Wright <artw@wassoc.com>, Colin Stewart <cstewart@wassoc.com>, Curtis Clement <curtisc@wassoc.com>

Hi Megan,

I just wanted to confirm some of the changes we have implemented as per our conversation last week. The line plan has changed significantly. Our line spacing in the shallows has been increased almost 3 fold in order to achieve the project instructions specifications while not exceeding them.

Our line plan spacing and side scan range values associated with depth are as below:

Water Depth	SSS Range	Line Spacing/Coverage
2-4m (Shoreline)	30m	40m / 100%
4-15m	50m	40m / 200%
15-20m	75m	60m / 200%
>20m	Backscatter	60m / Full MBES

We are surveying to the 4 meter contour at MLLW offshore (within safety) and the 2 meter contour inshore. The line plan was also created using the boundaries included in the PRF file. I am attaching a dxf of the line file for your review.

Please let me know if you have any concerns of questions and thanks again for clarifying our questions.

Cheers

Ransom

Ransom C. White III 941.730.6729

Megan Greenaway - NOAA Federal < megan.greenaway@noaa.gov>Wed, Oct 30, 2013 at 2:27 PMTo: Ransom White <ransom.white@gmail.com>C: Marc Moser <marc.s.moser@noaa.gov>, Brian Bunge <bbunge@wassoc.com>, Art Wright

<artw@wassoc.com>, Colin Stewart <cstewart@wassoc.com>, Curtis Clement <curtisc@wassoc.com>

Ransom,

Yes, I agree with the changes you have described in this email. Thanks for the update. Megan

[Quoted text hidden]

H12601 AWOIS and Wreck Report

Registry Number:	H12601
State:	New York
Locality:	Vicinity of Southern Long Island
Sub-locality:	Vicinity of Shinnecock Inlet
Project Number:	OPR-C331-KR-13
Survey Dates:	20131011 - 20140212

Charts Affected

Number	Edition	Date	Scale (RNC)	RNC Correction(s)*
12352	34th	09/01/2012	1:40,000 (12352_1)	USCG LNM: 11/11/2014 (12/9/2014) CHS NTM: None (11/28/2014) NGA NTM: None (12/20/2014)
12353	18th	11/01/2003	1:80,000 (12353_1)	[L]NTM: ?
12300	47th	05/01/2008	1:400,000 (12300_1)	[L]NTM: ?
13006	34th	05/01/2007	1:675,000 (13006_1)	[L]NTM: ?
5161	13th	10/01/2003	1:1,058,400 (5161_1)	[L]NTM: ?
13003	49th	04/01/2007	1:1,200,000 (13003_1)	[L]NTM: ?

* Correction(s) - source: last correction applied (last correction reviewed--"cleared date")

Features

Feature Type	Survey Depth	Survey Latitude	Survey Longitude
Wreck	14.90 m	40° 48' 39.6" N	072° 29' 48.0" W
Wreck	[None]	40° 49' 59.9" N	072° 28' 60.0" W
Wreck	[None]	40° 49' 48.7" N	072° 28' 45.8" W
Wreck	[None]	40° 50' 01.1" N	072° 27' 58.5" W
Wreck	3.92 m	40° 50' 35.7" N	072° 29' 10.9" W
Wreck	4.10 m	40° 50' 35.8" N	072° 29' 00.8" W

1 - Wreck Features

1.1) Wreck - AWOIS 7943

Survey Summary

Survey Position:	40° 48' 39.6" N, 072° 29' 48.0" W
Least Depth:	14.90 m (= 48.88 ft = 8.147 fm = 8 fm 0.88 ft)
TPU (±1.96 σ) :	THU (TPEh) [None] ; TVU (TPEv) [None]
Timestamp:	2014-043.00:00:00.000 (02/12/2014)
Dataset:	H12106_AWOIS.000
FOID:	US 0000077471 00001(022600012E9F0001)
Charts Affected:	12352_1, 12353_1, 12300_1, 13006_1, 5161_1, 13003_1

Remarks:

The wreck was located SW of the charted position.

Hydrographer Recommendations

Update wreck with new position and least depth.

S-57 Data

Geo object 1:	Wreck (WRECKS)
Attributes:	CATWRK - 2:dangerous wreck
	NINFOM - Chart wreck. AWOIS 7943.
	QUASOU - 6:least depth known
	SORDAT - 20140212
	SORIND - US,US,graph,H12601
	TECSOU - 3:found by multi-beam
	VALSOU - 14.900 m
	WATLEV - 3:always under water/submerged

Office Notes

1.2) Wreck - AWOIS 15108

Survey Summary

Survey Position:	40° 49' 59.9" N, 072° 28' 60.0" W
Least Depth:	[None]
TPU (±1.96 σ):	THU (TPEh) [None] ; TVU (TPEv) [None]
Timestamp:	2006-060.00:00:00.000 (03/01/2006)
Dataset:	H12106_AWOIS.000
FOID:	US 0000077518 00001(022600012ECE0001)
Charts Affected:	12352_1, 12353_1, 12300_1, 13006_1, 5161_1, 13003_1

Remarks:

Not fully investigated.

Hydrographer Recommendations

Retain wreck.

S-57 Data

Geo object 1:	Wreck (WRECKS)
Attributes:	CATWRK - 2:dangerous wreck
	NINFOM - Retain wreck PA. AWOIS 15108.
	QUASOU - 2:depth unknown
	SORDAT - 20060300
	SORIND - US,US,graph,Chart 12352
	WATLEV - 3:always under water/submerged

Office Notes

Concur. Retain charted Wreck PA.

1.3) AWOIS 15109

Survey Summary

Survey Position:	40° 49' 48.7" N, 072° 28' 45.8" W
Least Depth:	[None]
TPU (±1.96 σ):	THU (TPEh) [None] ; TVU (TPEv) [None]
Timestamp:	1981-001.00:00:00.000 (01/01/1981)
Dataset:	H12106_AWOIS.000
FOID:	US 0000007763 00001(022600001E530001)
Charts Affected:	12352_1, 12353_1, 12300_1, 13006_1, 5161_1, 13003_1

Remarks:

Search radius covered with 200% SSS and Multibeam. No evidence of wreck.

Hydrographer Recommendations

Delete charted wreck.

S-57 Data

Geo object 1: Cartographic symbol (\$CSYMB)

Geo object 2: Wreck (WRECKS)

Office Notes

1.4) AWOIS 15110

Survey Summary

Survey Position:	40° 50' 01.1" N, 072° 27' 58.5" W
Least Depth:	[None]
TPU (±1.96 σ):	THU (TPEh) [None] ; TVU (TPEv) [None]
Timestamp:	1981-001.00:00:00.000 (01/01/1981)
Dataset:	H12106_AWOIS.000
FOID:	US 0000077612 00001(022600012F2C0001)
Charts Affected:	12352_1, 12353_1, 12300_1, 13006_1, 5161_1, 13003_1

Remarks:

Search radius covered with 200% SSS and Multibeam. No evidence of wreck.

Hydrographer Recommendations

Delete charted wreck.

S-57 Data

Geo object 1: Cartographic symbol (\$CSYMB)

Geo object 2: Wreck (WRECKS)

Office Notes

1.5) New Wreck

Survey Summary

40° 50' 35.7" N, 072° 29' 10.9" W
3.92 m (= 12.86 ft = 2.143 fm = 2 fm 0.86 ft)
THU (TPEh) [None] ; TVU (TPEv) [None]
2014-043.00:00:00.000 (02/12/2014)
Wrecks.000
US 0000077523 00001(022600012ED30001)
12352_1, 12353_1, 12300_1, 13006_1, 5161_1, 13003_1

Remarks:

Uncharted wreck.

Hydrographer Recommendations

Chart new wreck.

S-57 Data

Geo object 1:	Wreck (WRECKS)
Attributes:	CATWRK - 2:dangerous wreck
	NINFOM - Chart wreck
	QUASOU - 6:least depth known
	SORDAT - 20140212
	SORIND - US,US,graph,H12601
	TECSOU - 3:found by multi-beam
	VALSOU - 3.919 m
	WATLEV - 3:always under water/submerged

Office Notes

1.6) New Wreck

Survey Summary

40° 50' 35.8" N, 072° 29' 00.8" W
4.10 m (= 13.46 ft = 2.244 fm = 2 fm 1.46 ft)
THU (TPEh) [None] ; TVU (TPEv) [None]
2014-043.00:00:00.000 (02/12/2014)
Wrecks.000
US 0000077517 00001(022600012ECD0001)
12352_1, 12353_1, 12300_1, 13006_1, 5161_1, 13003_1

Remarks:

Uncharted wreck.

Hydrographer Recommendations

Chart new wreck.

S-57 Data

Geo object 1:	Wreck (WRECKS)
Attributes:	CATWRK - 2:dangerous wreck
	NINFOM - Chart wreck
	QUASOU - 6:least depth known
	SORDAT - 20140212
	SORIND - US,US,graph,H12601
	TECSOU - 3:found by multi-beam
	VALSOU - 4.103 m
	WATLEV - 3:always under water/submerged

Office Notes

APPROVAL PAGE

H12601

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NGDC for archive

- H12601_DR.pdf
- Collection of depth varied resolution BAGS
- Processed survey data and records
- H12601_GeoImage.pdf

The survey evaluation and verification has been conducted according current OCS Specifications.

Approved:_____

Pete Holmberg Cartographic Team Lead, Pacific Hydrographic Branch

The survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved:_____

CDR Benjamin K. Evans, NOAA Chief, Pacific Hydrographic Branch