NOAA Form 76-35A				
National	U.S. Department of Commerce Oceanic and Atmospheric Administration National Ocean Survey			
]	DESCRIPTIVE REPORT			
Type of Survey:	Navigable Area			
Registry Number:	H12386			
	LOCALITY			
State:	New York			
General Locality:	Block Island Sound			
Sub-locality:	7 NM SE of Montauk Point, NY			
	2011			
I	CHIEF OF PARTY Lawrence T. Krepp CDR, NOAA			
	LIBRARY & ARCHIVES			
Date:				

H12386

NOAA FORM 77-28 (11-72) NATIO	U.S. DEPARTMENT OF COMMERCE NAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:
HYDROGR	APHIC TITLE SHEET	H12386
INSTRUCTIONS: The	Hydrographic Sheet should be accompanied by this form, filled in as completely as possib	le, when the sheet is forwarded to the Office.
State:	New York	
General Locality:	Block Island Sound	
Sub-Locality:	7 NM SE of Montauk Point, NY	
Scale:	20000	
Dates of Survey:	10/31/2011 to 11/16/2011	
Instructions Dated:	06/29/2011	
Project Number:	OPR-B363-TJ-11	
Field Unit:	NOAA Ship Thomas Jefferson	
Chief of Party:	Lawrence T. Krepp CDR, NOAA	
Soundings by:	S222 Reson 7125 MB	
Imagery by:		
Verification by:	Atlantic Hydrographic Branch	
Soundings Acquired in:	meters at Mean Lower Low Water	
H-Cell Compilation Units:	meters at Mean Lower Low Water	

Remarks:

N/A

The purpose of this survey is to provide contemporary surveys to update National Ocean Service (NOS) nautical charts. All separates are filed with the hydrographic data. Any revisions to the Descriptive Report (DR) generated during office processing are shown in bold red italic text. The processing branch maintains the DR as a field unit product, therefore, all information and recommendations within the body of the DR are considered preliminary unless otherwise noted. The final disposition of surveyed features is represented in the OCS nautical chart update products. All pertinent records for this survey, including the DR, are archived at the National Geophysical Data Center (NGDC) and can be retrieved via http://www.ngdc.noaa.gov/.

Table of Contents

<u>A. Area Surveyed</u>	<u>1</u>
A.1 Survey Limits	<u>1</u>
A.2 Survey Purpose	<u>3</u>
A.3 Survey Quality	<u>3</u>
<u>A.4 Survey Coverage</u>	<u>4</u>
A.5 Survey Statistics	<u>5</u>
A.6 Shoreline	<u>5</u>
<u>A.7 Bottom Samples</u>	<u>6</u>
B. Data Acquisition and Processing	<u>6</u>
B.1 Equipment and Vessels	<u>6</u>
B.1.1 Vessels	<u>6</u>
B.1.2 Equipment	<u>6</u>
B.2 Quality Control	<u>7</u>
B.2.1 Crosslines	<u>7</u>
B.2.2 Uncertainty	<u>8</u>
B.2.3 Junctions	<u>8</u>
B.2.4 Sonar QC Checks	<u>8</u>
B.2.5 Equipment Effectiveness	<u>8</u>
B.2.6 Factors Affecting Soundings	<u>8</u>
B.2.7 Sound Speed Methods	<u>8</u>
B.2.8 Coverage Equipment and Methods	<u>9</u>
B.2.9 IHOness	<u>9</u>
B.2.10 Density Compliance	<u>9</u>
B.3 Echo Sounding Corrections	<u>9</u>
B.3.1 Corrections to Echo Soundings	<u>9</u>
B.3.2 Calibrations	<u>9</u>
B.4 Backscatter	<u>9</u>
B.5 Data Processing	<u>9</u>
B.5.1 Software Updates	<u>9</u>
B.5.2 Surfaces	<u>10</u>
C. Vertical and Horizontal Control	<u>11</u>
<u>C.1 Vertical Control</u>	
C.2 Horizontal Control	
D. Results and Recommendations	<u>12</u>
D.1 Chart Comparison.	<u>12</u>
D.1.1 Raster Charts	
D.1.2 AWOIS Items.	
D.1.3 Charted Features	<u>12</u>
D.1.4 Uncharted Features	<u>14</u>
D.1.5 Dangers to Navigation	<u>15</u>
D.1.6 Shoal and Hazardous Features.	
D.1.7 Channels	
D.2 Additional Results	<u>15</u>

D.2 Construction and Dredging.	<u>16</u>
D.2.1 Shoreline.	
D.2.2 Prior Surveys.	
D.2.3 Aids to Navigation.	
D.2.4 Overhead Features.	
D.2.5 Submarine Features.	
D.2.6 Ferry Routes and Terminals.	
D.2.7 Platforms.	
D.2.8 Significant Features.	
<u>E. Approval Sheet</u>	
F. Table of Acronyms	

List of Tables

Table 1: Survey Limits	<u>1</u>
Table 2: Hydrographic Survey Statistics.	<u>5</u>
Table 3: Dates of Hydrography	
Table 4: Vessels Used.	
Table 5: Major Systems Used	6
Table 6: Survey Specific Tide TPU Values.	8
Table 7: Software Updates	<u>10</u>
Table 8: CARIS Surfaces.	<u>10</u>
Table 9: Water Level Files (.tid).	<u>11</u>
Table 10: USCG DGPS Stations.	<u>12</u>
Table 11: Largest Scale Raster Charts.	12

List of Figures

Figure 1: H12386 Survey Limits	2
Figure 2: OPR-B363-TJ-11 Original limits vs Survey Limits	
Figure 3: H12386 within OPR-B363-TJ-11.	
Figure 4: H12386 Crosslines.	7
Figure 5: Charted Boulders	
Figure 6: Un-Exploded Ordinance.	
Figure 7: ACORE 1	
Figure 8: ACORE 2.	

Descriptive Report to Accompany Survey H12386

Project: OPR-B363-TJ-11 Locality: Block Island Sound Sublocality: 7 NM SE of Montauk Point, NY Scale: 1:20000 October 2011 - November 2011 **NOAA Ship Thomas Jefferson** Chief of Party: Lawrence T. Krepp CDR, NOAA

A. Area Surveyed

7 NM SE of Montauk Point, NY

A.1 Survey Limits

Data was acquired within the following survey limits:

Northeast Limit	Southwest Limit		
41.1090833333 N	40.9406083333 N		
71.7839277778 W	71.6603777778 W		

Table 1: Survey Limits

Figure 1: H12386 Survey Limits

The Field Sheet did not cover the original limits and was modified accordingly.

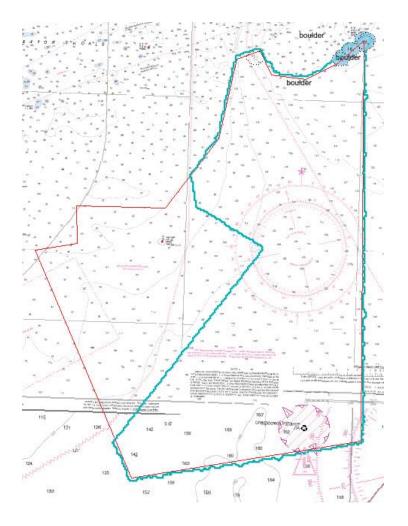


Figure 2: OPR-B363-TJ-11 Original limits vs Survey Limits

A.2 Survey Purpose

This project is being conducted in support of NOAA's Office of Coast Survey to provide contemporary hydrographic data in order to update the nautical charting products and reduce the survey backlog within the area. In addition, data from this project will support the Long Island Sound Seafloor Mapping Initiative for the States of Connecticut and New York. This project also responds, in part, to the concerns raised by the Northeast Marine Pilots for new hydrographic surveys to support deep draft (60') vessels transiting the areas traffic lanes. This project will cover approximately 228 nm2 of which 138 nm2 are critical survey areas as designated in the NOAA Hydrographic Survey Priorities, 2010 edition.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Irregularly shaped area 8.6 NM south west of Block Island

A.4 Survey Coverage

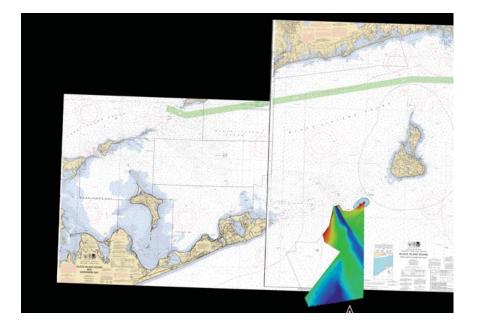


Figure 3: H12386 within OPR-B363-TJ-11

Survey Coverage was in accordance with the requirements in the Project Instructions and the HSSD.

A.5 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	<i>S-222</i>	Total
	SBES Mainscheme	0	0
	MBES Mainscheme	567.41	567.41
	Lidar Mainscheme	0	0
	SSS Mainscheme	0	0
LNM	SBES/MBES Combo Mainscheme	0	0
	SBES/SSS Combo Mainscheme	0	0
	MBES/SSS Combo Mainscheme	0	0
	SBES/MBES Combo Crosslines	49.72	49.72
	Lidar Crosslines	0	0
Number of Bottom Samples			0
Number of DPs			0
Number of Items Items Investigated by Dive Ops			0
Total Number of SNM			32.08

 Table 2: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates

Table 3: Dates of Hydrography

N/A

A.6 Shoreline

Shoreline was investigated in accordance with the Project Instructions and the HSSD.

A.7 Bottom Samples

Bottom Samples were acquired in accordance with the Project Instructions or the HSSD.

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	<i>S222</i>		
LOA	208 feet		
Draft	14 feet		
Table 4: Vessels Used			

No launches were utilized for this sheet.

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Reson	7125 ROV	MBES

Table 5: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

The crossline requirement for MBES is 4% as per FPM, the field achieved approximately 4% crossline coverage. Crosslines were acquired on the first two days of survey acquisition. To determine the difference between crosslines and mainscheme lines, separate surfaces were created: one with just crosslines and one with just mainscheme lines. Using these surfaces, a difference surface was generated within CARIS BathyDataBASE. The mean difference between the two surfaces was 10 cm with a standard deviation of 10cm. Based on these values, approximately 95% of the nodes were in agreement within 20cm.

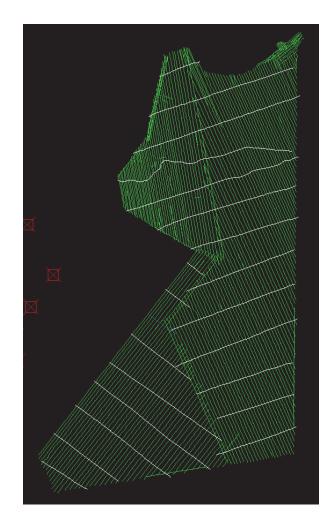


Figure 4: H12386 Crosslines

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Measured	Zoning
Ometers	0.2meters

Table 6: Survey Specific Tide TPU Values

Tidal uncertainty values were not provided for this survey. We determined a conservative value by looking at previous surveys.

B.2.3 Junctions

No contemporary junctions exist for this survey.

There are no contemporary surveys that junction with this survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

B.2.5.1None Exist

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

B.2.6.1 None Exist

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Casts were taken with the ship's MVP every half hour consistently.

MVP casts were processed using nearest in time. Some velocity issues were observed on DN 308, those casts were processed with nearest in distance within one hour.

B.2.8 Coverage Equipment and Methods

All Equipment and survey methods were used as detailed in the DAPR.

B.2.9 IHOness

Using CARIS BathyDataBASE, the uncertainty value required to meet IHO for each node is calculated using the equation (0.25+(0.013*Depth)^2)^0.5. This formula is then subtracted by the computed uncertainty of the depth layer. Positive values pass IHO, negative values fail IHO. Out of a total number of 6,824,954 soundings 99.91 percent passed. This exceeds the 95 percentile IHO Order 1 specifications.

B.2.10 Density Compliance

A Compliance Review for Density was performed using the Density Compliance Python Script. This computes basic statistics to assess compliance with of NOS Hydrographic Specifications and Deliverables sections 5.1.3 and 5.2.2.1 2012. This confirms that 95% of the nodes in the finalized surfaces are populated with at least 5 soundings. All the grids passed Density Compliance with the lowest at 97.5% and up to 100%.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Backscatter was not collected for this survey.

B.5 Data Processing

B.5.1 Software Updates

Manufacturer	Name	Version	Service Pack	Hotfix	Installation Date	Use
Caris	HIPS/SIPS	7.1	2	5	11/05/2012	Processing
Caris	Bathy DataBASE	4.0			09/28/2012	Processing
NOAA	Pydro	12.9			05/06/2012	Processing
Pitney Bowes	MapInfo	11		4	05/27/2012	Processing

The following software updates occurred after the submission of the DAPR:

Table 7: Software Updates

The following Feature Object Catalog was used: CARIS support files version 5.2

The THOMAS JEFFERSON has modified the version 5.2 feature object catalogs for field use. We also upgraded all of our processing machines to Windows 7, 64-bit in October of 2012.

B.5.2 Surfaces

The following CARIS surfaces were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H12386_50cm_CUBE_MLLW_Final	CUBE	50 centimeters	15.53 meters - 20 meters	NOAA_0.5m	Object Detection
H12386_2m_CUBE_MLLW_Final	CUBE	2 meters	18 meters - 40 meters	NOAA_2m	Complete MBES
H12386_4m_CUBE_MLLW_Final	CUBE	4 meters	36 meters - 57.73 meters	NOAA_4m	Complete MBES
386_4m_CUBE_MLLW_Final_Comb	CUBE	4 meters	15.53 meters - 57.73 meters	N/A	Complete MBES

Table 8: CARIS Surfaces

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

Standard Vertical Control Methods Used:

Discrete Zoning

File Name	Status
845-2660	Final Approved
B363TJ2012CORP.zdf	Final Approved

 Table 9: Water Level Files (.tid)

There was no Tide Corrector file associated with this survey.

A request for final approved tides was sent to N/OPS1 on 05/24/2012. The final tide note was received on 06/02/2012.

TPU parameters were not given for this survey by COOPS. A conservative value was used based on previous surveys.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD83) zone 19N.

The following DGPS Stations were used for horizontal control:

DGPS Stations
Moriches NY
Sandy Hook NJ
Acushnet MA

Table 10: USCG DGPS Stations

D. Results and Recommendations

D.1 Chart Comparison

D.1.1 Raster Charts

The following are the largest scale raster charts, which cover the survey area:

Chart	Scale	Edition	Edition Date	LNM Date	NM Date
13215	1:40000	20	02/2011	02/08/2011	02/19/2011
13205	1:40000	39	12/2010	12/14/0010	12/18/0010

Table 11: Largest Scale Raster Charts

<u>13215</u>

For chart 13215 sounding depths generally agree within two to three feet. Survey soundings are generally deeper than charted depths.

13205

Chart 13205 sounding depths generally agree within two to three feet of charted depths.

D.1.2 AWOIS Items

No AWOIS items exist for this survey.

D.1.3 Charted Features

There were two charted items for H12386 the first being a charted boulder and the second being an unexploded ordinance located in the south eastern portion of the sheet. The boulder is charted appropriately

on 53 ft sounding. There were also two bottom samples of boulders. One was not properly placed and in the location of the other, no boulders were found. Both should be removed from the chart.

The unexploded ordinance is charted but was not found with the ship's multibeam. The item was only covered with complete multibeam with 4 passes and likely sub-bottom. Historical information from 2003 project, ACORE recommended no removal and a .25nm buffer(463m) around the item for safety during it's operations. A 500m radius is recommended for any trawling in the area. The current radius of 100m is inadequate for the chart by this information. See ACORE Contract NP. DACW33-01-D-0004

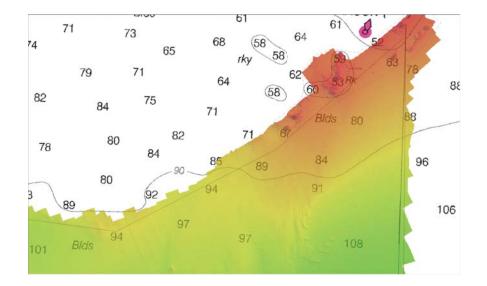


Figure 5: Charted Boulders

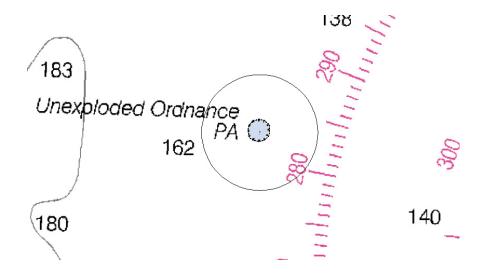


Figure 6: Un-Exploded Ordinance

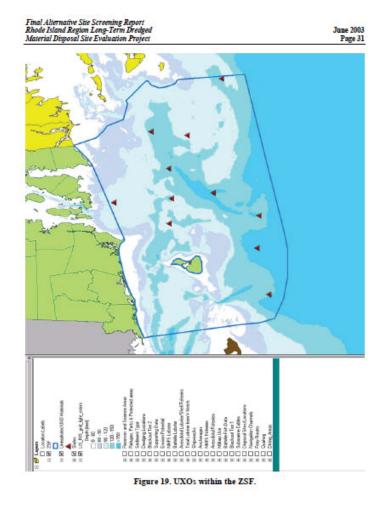


Figure 7: ACORE 1

Unexploded Ordnances (UXOs)

There are 11 identified locations of unexploded ordnances (UXO) in the ZSF. These include unexploded torpedoes, unexploded depth charges, and unexploded bombs (Figure 19). There is no evidence that these UXO's are going to be removed; some have been there since the 1940s. The interagency group agreed that for safety reasons, UXOs within the ZSF should be excluded during Tier 2 screening. For additional safety, a 0.25 nmi buffer was placed around each UXO.

Figure 8: ACORE 2

D.1.4 Uncharted Features

There was an area of boulders that was not properly charted, one uncharted wreck, and two individual boulders located in the northern portion of the sheet. See FFF file for further information.

D.1.5 Dangers to Navigation

No Danger to Navigation Reports were submitted for this survey.

D.1.6 Shoal and Hazardous Features

One charted Rock was investigated and One Unexploded ordnance(UXO). The Items were covered by Reson 7125 Object detection multibeam. The UXO was covered by 4 passes of OBMB for the 40-80 meter level. See Charted Features.

D.1.7 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Shoreline

There was no shore line investigation conducted for this survey.

D.2.2 Prior Surveys

No prior survey comparisons exist for this survey.

D.2.3 Aids to Navigation

Aids to navigation (ATONs) do not exist for this survey.

D.2.4 Overhead Features

Overhead features do not exist for this survey.

D.2.5 Submarine Features

Submarine features do not exist for this survey.

D.2.6 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.7 Platforms

No platforms exist for this survey.

D.2.8 Significant Features

In the Northeast Corner of the Survey there is a rocky seabead area. Key rocks were noted to profile significant depths inside the area. See H12386_FFF.000 for Details.

D.2 Construction and Dredging

There is no present or planned construction or dredging within the survey limits.

E. Approval Sheet

As Chief of Party, Field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys and Specifications Deliverables Manual, Field Procedures Manual, Standing and Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Matt VanHoy	Sheet Manager	12/20/2012	Witteen & Whine
LT William Winner	Field Operations Officer	12/20/2012	Withem & Winner
CDR Lawrence Krepp	Chief of Party	12/20/2012	Lawer 7 Kum

F. Table of Acronyms

Acronym	Definition
AFF	Assigned Features File
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continually Operating Reference Staiton
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERZT	Ellipsoidally Referenced Zoned Tides
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division
HSSDM	Hydrographic Survey Specifications and Deliverables Manual

Acronym	Definition
HSTP	Hydrographic Systems Technology Programs
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Local Notice to Mariners
LNM	Linear Nautical Miles
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NAIP	National Agriculture and Imagery Program
NALL	Navigable Area Limit Line
NM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
PST	Physical Science Technician
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Porpagated Error
TPU	Topside Processing Unit
USACE	United States Army Corps of Engineers
USCG	United Stated Coast Guard
UTM	Universal Transverse Mercator
XO	Exectutive Officer
ZDA	Global Positiong System timing message
ZDF	Zone Definition File

APPENDIX I

TIDES AND WATER LEVELS

UNITED STATES DEPARMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Silver Spring, Maryland 20910

TIDE NOTE FOR HYDROGRAPHIC SURVEY

DATE : November 30, 2011

HYDROGRAPHIC BRANCH: Atlantic HYDROGRAPHIC PROJECT: OPR-B363-TJ-2012 HYDROGRAPHIC SHEET: H12386

LOCALITY: 7 NM SE of Montauk Point, Block Island Sound, NY TIME PERIOD: October 31 - November 16, 2011

TIDE STATION USED: 845-2660 Newport, RI

Lat. 41° 30.3'N Long. 71° 19.6' W

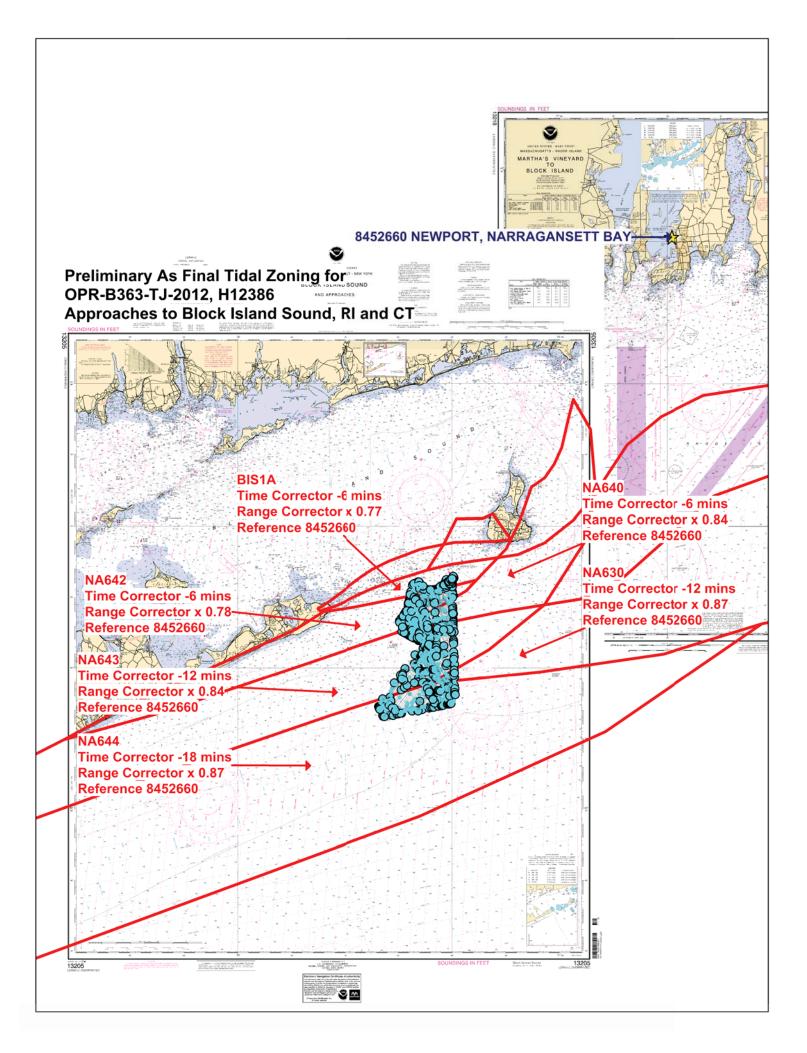
PLANE OF REFERENCE (MEAN LOWER LOW WATER): 0.000 meters **HEIGHT OF HIGH WATER ABOVE PLANE OF REFERENCE:** 1.099 meters

REMARKS: RECOMMENDED ZONING

Preliminary zoning is accepted as the final zoning for project OPR-B363-TJ-2012, H12386, during the time period between October 31 and November 16, 2011.

Please use the zoning file B363TJ2012CORP submitted with the project instructions for OPR-B363-TJ-2012. Zones BIS1A, NA630, NA640, NA642, NA643, and NA644 are the applicable zones for H12386.

Refer to attachments for zoning information.


Note 1: Provided time series data are tabulated in metric units (meters), relative to MLLW and on Greenwich Mean Time on the 1983-2001 National Tidal Datum Epoch (NTDE).

Digitally signed by Gerald Hovis DN: cn=Gerald Hovis, o=Center for Operational Oceanographic Products and Services, ou=NOAA/NOS/CO-OPS/OD/ PSB, email=gerald.hovis@noaa.gov, c=US Date: 2011.12.08 12:58:11 -05'00'

CHIEF, PRODUCTS AND SERVICES BRANCH

APPENDIX II

SUPPLEMENTAL SURVEY RECORDS AND CORRESPONDENCE

New England District

Contract No. DACW33-01-D-0004 Delivery Order No. 02 June 2003

Final Report

Task 10.4 ALTERNATIVE SITE SCREENING REPORT

RHODE ISLAND REGION LONG-TERM DREDGED MATERIAL DISPOSAL SITE EVALUATION PROJECT

FINAL

Alternative Site Screening Report

Rhode Island Region Long-Term Dredged Material Disposal Site Evaluation Project

> Contract Number DACW33-01-D-0004 Delivery Order No. 02

> > to

U.S. Army Corps of Engineers North Atlantic Division New England District 696 Virginia Road Concord, MA 01742-2751

By:

Battelle 397 Washington Street Duxbury, MA 02332 (781) 934-0571

June 25, 2003

TABLE OF CONTENTS

1.0	INT	RODU	CTION	1
	1.1 1.2 1.3	Dredg	rity ing Needs Study of Siting Feasibility (ZSF) Study	1
2.0	Site	Screeni	ing Process	4
	2.1	Tier 1 2.1.1 2.1.2 2.1.3	Screening Approach and Results Areas of High Dispersion (Erosion) Potential Areas of Conflicting Uses Summary of Tier 1 Considerations	
	2.2	Tier 2	Screening Approach and Results	
		2.2.1	Minimizing Impacts to Fish and Shellfish Resources	
			Fish	
			Lobster	
			Shellfish	
		2.2.2	Minimizing Impacts to Navigation	
		2.2.3	Minimizing Impacts to Diving Areas	
		2.2.4	Other Considerations	
			Unexploded Ordnances (UXOs)	
			Economics	
			Tidal Ellipses	
			Grain Size Distributions	
			Historic Disposal Sites	
		2.2.5	Summary of Tier 2 Considerations	
		2.2.6	Completed Screening	
3.0	Data	ı Gaps		
4.0	Refe	erences.		

LIST OF TABLES

Table 1. MPRSA Criteria for the Evaluation and Designation of ODMDS (MPRSA 228.5 and	ł
228.6)	5
Table 2. Rhode Island Region Screening Layers and Associated MPRSA Criteria	
Table 3. Latitude and Longitude for Area E and Area W	. 43

LIST OF FIGURES

Figure 1. Zone of Siting Feasibility and Bathymetry for Rhode Island Region.	3
Figure 2. A Schematic Depicting Shear Stress on the Sea Bed.	
Figure 3. Predicted Sediment Erodability Parameter for 1.0 mm Grain Size for Typical Peak	
Tide and 1% Frequency of Occurrence Wave Conditions.	10
Figure 4. Predicted Relationship Between Depth and Sediment Erodability Parameter	
Figure 5. Depth Contour of 115 ft, the Minimum Depth for Locating a Disposal Site	
Figure 6. Anchorages, Reserve Areas, Science Areas, Beaches, or Other Conservation Areas	
Figure 7. Active Ordnance, Military Use, Pipeline, and Cable Areas.	
Figure 8. Shipwrecks within the ZSF.	16
Figure 9. Conflicting Uses Areas Excluded During Tier 1 Screening	
Figure 10. Tier 1 Screening Summary	
Figure 11. Ebb (top) and Flood (bottom) Currents in the Northwest Corner of the ZSF	19
Figure 12. Anecdotal Fishing Areas in the ZSF Identified by Day Fishermen.	21
Figure 13. Total Fish CPUE Data Collected by NMFS and the Corps with Anecdotal Fishing	
Areas	22
Figure 14. Anecdotal Lobstering Areas in the ZSF Identified by Lobstermen.	24
Figure 15. Lobster CPUE from NMFS and the Corps with Anecdotal Information.	
Figure 16. Shellfish Habitat within the ZSF.	
Figure 17. Navigational Uses of the ZSF (Shipping Lanes, Ferry Routes, and Lightering	
Areas).	
Figure 18. Diving Areas within the ZSF	30
Figure 19. UXOs within the ZSF	31
Figure 20. Concentric Circles with 20 nmi Radius from Dredging Centers in RI and MA	32
Figure 21. Tidal Ellipse at the Separation Zone Site (Site 69B)	34
Figure 22. Grain Size Distribution within the ZSF by McMaster and Battelle.	35
Figure 23. Grain Size Distribution by Knebel.	36
Figure 24. Grain Size Information Extrapolated from Ocean Quahog Distribution	37
Figure 25. Historic and Current Disposal Sites within the ZSF.	38
Figure 26. Tier 2 Screening Summary	39
Figure 27. Tier 1 and Tier 2 Screening Results.	
Figure 28. Recommended Areas (Areas E and W) Resulting from the Screening Process	42

APPENDICES

Appendix A: Quantitative Screening Values for RIR Screening Criteria (Levels 1, 2, and 3)

Acronyms

	Acronyms
CI	Coastal Institute
Corps	U.S. Army Corps of Engineers
CPUE	catch per unit effort
CRMC	Coastal Resource Management Council
CZM	Coastal Zone Management
DEM	Department of Environmental Management
EIS	environmental impact statement
EPA	U.S. Environmental Protection Agency
ESRI	Environmental Systems Research Institute, Inc.
ft	foot
GIS	Geographic Information System
hr	hour
kg	kilogram
LĪS	Long Island Sound
m^2	square meter
MA	Massachusetts
MCY	million cubic yards
MLLW	Mean Low Lower Water
mm	millimeter
MPRSA	Marine Protection Research and Sanctuaries Act
NEPA	National Environmental Policy Act
nmi	nautical mile
nmi ²	square nautical mile
NOAA	National Oceanic and Atmospheric Administration
NMFS	National Marine Fisheries Service
NOI	Notice of Intent
ODMDS	Ocean Dredged Material Disposal Site
RI	Rhode Island
RIR	Rhode Island Region
RIRPP	Rhode Island Resource Protection Project
Site 69B	Separation Zone Site
SPI	sediment profile imaging
URI	University of Rhode Island
USFWS	United States Fish and Wildlife Service
UXO	unexploded ordnance
WAVAD	ADvanced directional spectral WAVe model
ZSF	Zone of Siting Feasibility

1.0 INTRODUCTION

At the request of the Governor of Rhode Island, the United States Army Corps of Engineers (the Corps) New England District and United States Environmental Protection Agency (EPA) Region 1 are evaluating the feasibility of designating a long-term ocean dredged material disposal site for Rhode Island and southeastern Massachusetts, referred to herein as the Rhode Island Region (RIR), pursuant to the Marine Protection, Research, and Sanctuaries Act (MPRSA), 33 U.S.C. Section 1401 *et seq*. The potential site would be used for disposal of material dredged from harbors and navigation areas in Rhode Island and southeastern Massachusetts found to be suitable for ocean disposal under the MPRSA.

In accordance with EPA's Statement of Policy for Voluntary Preparation of National Environmental Policy Act documents for all ocean disposal site designations (Federal Register 62(229): 63334-63336, November 28, 1997), EPA will prepare an EIS for this project. The EIS will evaluate the potential environmental impacts associated with designation of an ocean dredged material disposal site (ODMDS), as well as a no action alternative. As part of the site designation evaluation, EPA issued a Notice of Intent (NOI) (April 6, 2001), held formal scoping and public involvement activities (Petruny-Parker, *et al.*, 2003), defined the needs for dredging (Corps, 2002a), and defined the Zone of Siting Feasibility (ZSF) (Corps, 2002b). The ZSF is the reasonable and practical area within which a dredged material site could be located. The geographic boundaries of the ZSF were defined using guidelines prepared by EPA and the Corps (1986). The dredging needs and delineation of the ZSF was also coordinated with Federal and state cooperating agencies and the project's Working Group.

This report summarizes the process used to determine potential areas within the ZSF, which could be further considered as ocean disposal sites. This screening process involved review and evaluation of available biological, chemical, and physical data as well as considerations of other uses of the ocean within the ZSF. The following sections present the results of this process.

1.1 Authority

EPA has the authority to manage the disposal of dredged material in open water including the designation of ocean disposal sites under section 102(c) of the MPRSA. However, EPA's designation of an ocean disposal site does not authorize or result in the disposal of any particular material at any site. The use of any area designated by EPA for disposal of dredged material would only occur following the issuance of a permit by the Corps under Section 103 of the MPRSA. The dredged material disposal permitting process requires consideration of a range of disposal alternatives, including beneficial reuse and upland treatment and disposal. Designation only makes a site available for ocean disposal and is only one of a number of disposal options for proposed dredging projects.

1.2 Dredging Needs Study

A Dredging Needs Study was conducted to determine the current dredging needs and project volumes of dredged material in the Rhode Island and southeastern Massachusetts region over the

next 20 years (Corps, 2002a). A questionnaire was sent to non-Federal, private and public navigation dependent facilities requesting an estimate of the quantities of material that they would likely dredge through 2021. Future dredging needs identified by the 178 returned questionnaires were combined with projections from proposed Federal navigation projects and supplemented with historic dredging data. Reviewing the historic dredging information allowed an identification of the material that has historically been used for beach renourishment, which was deducted from the working estimate. This analysis resulted in an estimate of the total dredged material for which disposal will be needed through 2021. The survey results indicated that between 2002 and 2021 the Rhode Island and southeastern Massachusetts region has the potential to generate almost nine million cubic yards (MCY) of dredged material that will require identification of a disposal location.

Based on the results of the dredging needs analysis, the study area was divided into four dredging centers or geographical areas that share a logical point of origin for dredged material. The identification of dredging centers was done to assist in identification of the Zone of Siting Feasibility (ZSF) since the location at which the largest volumes of dredged material are likely to originate will influence the ZSF. Transport distances are most likely to be centered on the dredging locations with the highest projected volume of dredged material. The dredging centers defined for the Rhode Island and southeastern Massachusetts region are: Southern Rhode Island and Block Island, Narragansett Bay, Buzzards Bay, and Southern Cape Cod and the Islands.

1.3 Zone of Siting Feasibility (ZSF) Study

The geographic boundaries of the ZSF were determined based on the results of the Dredging Needs Study (Corps, 2002a) along with evaluation of a series of selection criteria (Corps, 2002b). The selection criteria included political boundaries, navigation restrictions (such as safety issues, etc.), type of disposal plant, cost of transporting dredged material, and distance to the continental shelf. Identification of the ZSF boundaries assumed that safe and practical parameters of transporting dredged material to an open water site influence the open water limits of the ZSF. Based on the results of the ZSF study, the northern boundary of the ZSF was set at the Territorial Limits of Rhode Island and Massachusetts (Figure 1). The western limit is based on the southerly projection of the state boundary between Rhode Island and Connecticut and excludes the Long Island Sound (LIS) Region, since this area is currently being addressed under a separate EIS evaluating the designation of disposal sites in that region. The southern boundary is based on a travel distance of ~ 20 nautical miles (nmi) from the southern-most dredging location on Block Island. This distance was determined to be a reasonable transport distance considering costs, safety, practicality, and efficiency within an 8-hour workday. The eastern boundary of the ZSF extends south from the Rhode Island/Massachusetts boundary to a point where it intersects the three-mile Territorial Limit of Massachusetts west of the Naushan and Nashawena Islands. The eastern limit then follows the three-mile territorial sea limit to a point south of Noman's Land, and then extends south approximately ~ 20 nmi until it intersects the seaward boundary of the ZSF. The ZSF encompasses Rhode Island Sound, Block Island Sound, and the area of the continental shelf south to a distance ~ 30 nmi from the mouth of Narragansett Bay. The ZSF covers an area of 1100 nmi² and reflects the maximum distance offshore that is practical for transporting dredged material to a potential disposal site.

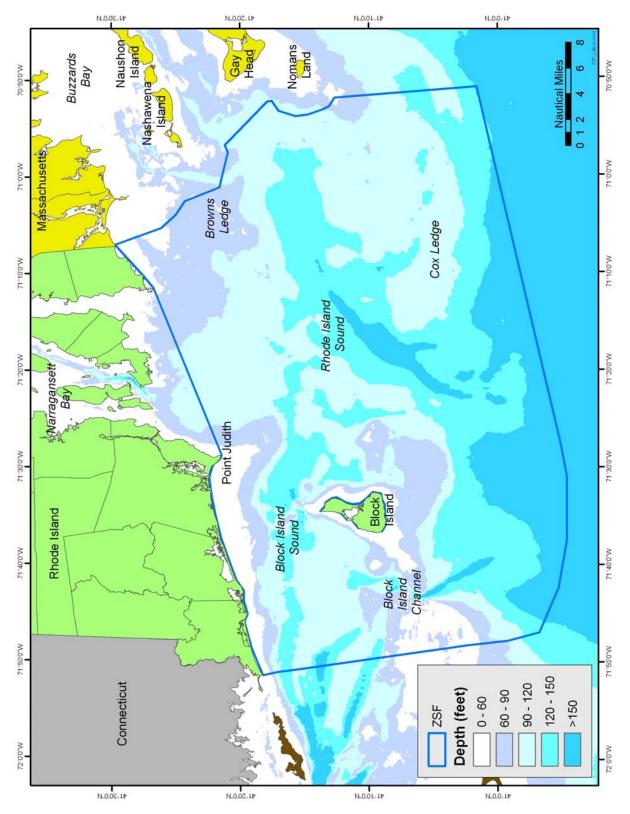


Figure 1. Zone of Siting Feasibility and Bathymetry for Rhode Island Region.

The following sections describe the data and steps used to screen out areas not acceptable for further consideration and those considered acceptable for evaluation in the EIS.

2.0 SITE SCREENING PROCESS

The MPRSA lists 5 general and 11 specific required criteria in the evaluation and designation of ocean disposal sites (40 CFR 228.5 and 40 CFR 228.6, respectively) (Table 1). The five general criteria are used in the selection and approval for continuing use of ocean disposal sites. The 11 specific criteria are used to ensure that the general criteria are met and may include a number of factors deemed important to the designation. EPA, in consultation with other Federal and state agencies, performed initial screening of areas within the ZSF using this criterion to identify areas within the ZSF where alternative disposal sites should not be located. Within the areas remaining after initial screening, alternative disposal sites will be delineated and site specific evaluations will be performed and documented in the EIS using criteria defined in the MPRSA.

A Working Group was established to supplement the criteria in MPRSA and to identify local evaluation factors that should also be considered in the screening process. The Coastal Institute (CI) at the University of Rhode Island (URI) served as a facilitators of the Working Group, which was made up of stakeholders, science and policy advisors from URI, and staff from the Corps, EPA, Rhode Island (RI) Coastal Resources Management Council (CRMC), RI Department of Environmental Management (DEM), and Massachusetts (MA) Coastal Zone Management (CZM). The Working Group was charged with developing a list of evaluation factors they considered important for identifying acceptable alternative sites and identified information and data needed to apply the evaluation criteria (Table 2). The list of Working Group factors were used to enhance the 5 general and 11 specific MPRSA criteria with the specific concerns and issues related to the RIR ZSF (Petruny-Parker, *et al.*, 2003). The major issues identified by the Working Group included:

- Potential impacts to fisheries (commercial and recreational),
- Potential impacts to non-commercial species,
- Potential conflicts with recreational areas,
- Potential conflicts with commerce/military activities,
- Possible remedial use,
- Economic factors, and
- Hydrodynamic factors.

These evaluation factors and the site designation criteria were used by EPA and the Corps to identify a series of geospatial screening layers that addressed each of the Working Group's concerns (Table 2). To support the screening, EPA and the Corps developed three levels of quantitative values specific to each screening layer (Appendix A). These three levels were developed after relevant available data for each screening layer were examined and were used to quantitatively categorize areas that should be excluded from consideration (Level 1), areas that could be excluded or included (Level 2), and areas that could be included (Level 3). In addition, the individual layers, developed based on the ocean disposal site designation criteria and the

Table 1. MPRSA Criteria for the Evaluation and Designation of ODMDS (MPRSA 228.5and 228.6).

MPRSA				
Section	MPRSA Regulation			
228.5(a)	The dumping of materials into the ocean will be permitted only at sites or in areas select minimize the interference of disposal activities with other activities in the marine			
	environment, particularly avoiding areas of existing fisheries or shellfisheries, and regions of			
	heavy commercial or recreational navigation.			
228.5(b)	Locations and boundaries of disposal sites will be so chosen that temporary perturbations in water quality or other environmental conditions during initial mixing caused by disposal operations anywhere within the site can be expected to be reduced to normal ambient seawater levels or to undetectable contaminant concentrations or effects before reaching any beach, shoreline, marine sanctuary, or known geographically limited fishery or shellfishery.			
228.5(c)	If at any time during or after disposal site evaluation studies, it is determined that existing disposal sites presently approved on an interim basis for ocean dumping do not meet the criteria for site selection set forth in §§ 228.5 through 228.6, the use of such sites will be terminated as soon as suitable alternate disposal sites can be designated.			
228.5(d)	The sizes of ocean disposal sites will be limited in order to localize for identification and			
	control any immediate adverse impacts and permit the implementation of effective monitoring and surveillance programs to prevent adverse long-range impacts. The size, configuration, and leastion of any dispessed site will be determined as a part of the dispessed site avaluation or			
	location of any disposal site will be determined as a part of the disposal site evaluation or designation study.			
228.5(e)	EPA will, wherever feasible, designate ocean dumping sites beyond the edge of the			
	continental shelf and other such sites that have been historically used.			
228.6(a)	In the selection of disposal sites, in addition to other necessary or appropriate factors			
	determined by the Administrator, the following factors will be considered:			
(1)	Geographical position, depth of water, bottom topography and distance from coast;			
(2)	Location in relation to breeding, spawning, nursery, feeding, or passage areas of living resources in adult or juvenile phases;			
(3)	Location in relation to beaches and other amenity areas;			
(4)	Types and quantities of wastes proposed to be disposed of, and proposed methods of release, including methods of packing the waste, if any;			
(5)	Feasibility of surveillance and monitoring;			
(6)	Dispersal, horizontal transport and vertical mixing characteristics of the area, including prevailing current direction and velocity, if any;			
(7)	Existence and effects of current and previous discharges and dumping in the area (including cumulative effects);			
(8)	Interference with shipping, fishing, recreation, mineral extraction, desalination, fish and shellfish culture, areas of special scientific importance and other legitimate uses of the ocean;			
(9)	The existing water quality and ecology of the site as determined by available data or by trend assessment or baseline surveys;			
(10)	Potentiality for the development or recruitment of nuisance species in the disposal site;			
(11)	Existence at or in close proximity to the site of any significant natural or cultural features of historical importance.			

Screening Layer	MPRSA Criteria Section	CI Factor	Tier
ZSF	228.5(e)		1
Erosion Potential	228.6(a)(6)	Х	1
Bathymetry	228.6(a)(1)		1
Anchorages	228.5(a); 228.6(a)(8)	Х	1
Reserves/Science Area	228.5(b)	Х	1
Public Beaches - RI/MA	228.5(b); 228.6(a)(3)	Х	1
Refuges, Parks, Protected Areas	228.5(b); 228.6(a)(3)	Х	1
Active Ordnance/Military Use	228.6(a)(8)	Х	1
Active Utilities and Pipeline	228.6(a)(8)	Х	1
Historic or Culturally Important Shipwrecks/ Cultural/Historical Sites	228.6(a)(11)		1
NMFS Total fish CPUE - 3 Seasons	228.6(a)(2); 228.5(a)	Х	2
NMFS Top 10 Commercial Fish Species CPUE - 3 Seasons	228.5(a); 228.6(a)(2)	Х	2
Battelle Finfish CPUE Data (Battelle, 2001/2002)	228.5(a); 228.6(a)(2)	Х	2
Fisheries Areas (2002) Rollup	228.5(a); 228.6(a)(8)	Х	2
Fishing areas from M&E Rpt Fig. 12	228.5(a); 228.6(a)(8)	Х	2
Anecdotal Fisheries Areas from Fishermen (2003)	228.5(a); 228.6(a)(8)	Х	2
NMFS Lobster CPUE - 3 Seasons	228.5(a); 228.6(a)(2)	Х	2
Battelle Lobster CPUE Data (2001/2002)	228.5(a); 228.6(a)(2)	Х	2
Lobster V-Notch Data	228.5(a); 228.6(a)(2)	Х	2
Lobster Distribution Anecdotal from Fishermen (2002/2003)	228.5(a); 228.6(a)(2)	Х	2
Ocean Quahog Distribution (Fall River EIS, 1976)	228.5(a); 228.6(a)(2)	Х	2
Ocean Quahog Data (Fogarty, 1979)	228.5(a); 228.6(a)(2)	Х	2
Quahog Data (Battelle, 1998/2002)	228.5(a); 228.6(a)(2)	Х	2
Scallops	228.5(a); 228.6(a)(2)	Х	2
Shipping Lanes	228.5(a); 228.6(a)(8)	Х	2
Ferry Routes	228.5(a); 228.6(a)(8)	Х	2
Lightering Areas	228.5(a); 228.6(a)(8)	Х	2
Diving Areas	228.6(a)(8); 228.6(a)(11)	Х	2
UXO	228.6(a)(12)	Х	2
Distance from coast - Economics	228.6(a)(1)	Х	2
Currents - Tidal Ellipses	228.5(b); 228.6(a)(3); 228.6(a)(6)	Х	2
Sedimentary Environment (grain size distributions)	NA	Х	2
Historic Disposal Sites	228.5(c); 228.6(a)(7)	Х	2
One Nautical Mile Grid (from Top Left Corner of ZSF)	NA	NA	Screening aid

Table 2. Rhode Island Region Screening Layers and Associated MPRSA Criteria.

Working Group factors, were prioritized into two tiers to facilitate the screening process (Table 2). Tier 1 layers were exclusionary layers used to identify <u>areas</u> within the ZSF that were not acceptable for locating an ocean disposal site designated under the MPRSA (Tier 1 screening). Tier 2 layers were used to identify area(s) for further evaluation in the EIS.

Data from current and historical studies were assembled and mapped graphically as Geographic Information System (GIS) data layers using Environmental Systems Research Institute, Inc. (ESRI) ArcGIS Desktop software (i.e., Arcview) to address each screening criteria (Table 2). These screening maps were presented at an interagency meeting held at the Corps in Concord, MA on May 15, 2003. The interagency group included representatives from the Corps, EPA Region 1, National Marine Fisheries Service (NMFS), US Fish and Wildlife Service (USFWS), RI CRMC, and MA CZM. Battelle facilitated the interagency meeting and conducted the screening presentation. As a result of the interagency screening, two areas were identified within the ZSF as acceptable for locating dredged material disposal sites.

The data layers used to screen the ZSF and the results of the screening process are presented in the following sections. This information is presented as follows:

- Tier 1 data
- Tier 1 screening results
- Tier 2 data
- Tier 2 screening results
- Completed screening results
- Areas carried forward for further evaluation

2.1 Tier 1 Screening Approach and Results

Tier 1 screening defined areas within the ZSF that were not acceptable for locating an ocean disposal site designated under the MPRSA and refined the area to be considered for Tier 2 screening. The geographic boundaries of the ZSF previously excluded areas beyond the continental shelf and areas seaward of approximately 17 nmi south of Block Island, RI. In addition, areas of high erosion potential and of clearly conflicting uses were excluded from further consideration during the Tier 1 screening.

2.1.1 Areas of High Dispersion (Erosion) Potential

The potential erosion and transport of sediment is an important factor in assessing a suitable location for dredged material disposal. However, movement of bottom sediments is not uncommon on the continental shelf (Butman *et al.*, 1979). To characterize in detail the erosional/depositional processes at work in the ZSF, a modeling effort was undertaken. Waves and currents were modeled throughout the ZSF using wave measurements taken at the Buzzards Bay Tower by the National Data Buoy Center (1990 – 1992) and available wind hindcast data. The wind field over the ZSF was developed based on wind data generated by the National Center of Atmospheric Research (1990-1999). A directional wave model (also known as WAVAD [the ADvanced directional spectral WAVe model]) was then applied to characterize long-term wave climate over the ZSF.

To estimate the potential resuspension of sediments caused by modeled wave and current field, the bottom shear stress generated by the wave and current forces was determined. Shear stress is the frictional or "sliding" force that horizontal currents exert on the sea bed (Figure 2).

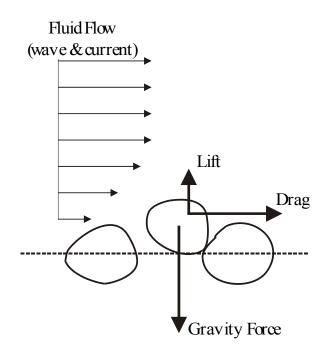


Figure 2. A Schematic Depicting Shear Stress on the Sea Bed.

Resuspension is estimated by comparing shear stress exerted by the waves and currents to the theoretical critical shear stress for the initiation of sediment motion. Bottom shear stress is a function of the current velocity, wave height, wave period, water depth, and bottom roughness. Critical shear stress was estimated from grain size.

A model of sediment transport was then applied to the ZSF for 1% frequency of occurrence wave conditions combined with the typical peak tidal currents for 1.0 millimeter (mm) grain size sediments. These wave conditions represent the waves expected during the strongest winter storm of a single year. These values were used to characterize the potential for erodability throughout the ZSF. The erodability parameter is defined as the ratio of the wave and current induced bottom shear stress to the critical threshold shear stress (Equation 1).

 $Erodability Parameter = \frac{BottomShearStress}{CriticalShearStress}$

where:

Bottom Shear Stress = frictional or sliding force exerted by horizontal flow (waves and currents) Critical Shear Stress = critical value of shear stress necessary to overcome gravity Sediment erodability parameter values less than one indicate that wave and current energy are not sufficient to resuspend and transport non-cohesive bottom sediments for the given storm conditions and indicate areas that are likely to be depositional. Sediment erodability parameter values greater than one but less than three indicate that wave and current energy may occasionally be sufficient to mobilize non-cohesive bottom sediments and indicated areas of some sediment sorting and reworking. Sediment mobility parameter values greater than three are considered to indicate high wave and current energy environments and areas of frequent reworking and erosion. Figure 3 shows the model-predicted erodability parameter values within the ZSF.

The calculated erodability parameter was then compared to depth (Figure 4). The data predicted that sediments were not expected to be resuspended at depths below 170 feet (ft) (erodability = 1), but occasional erosion and frequent sediment sorting occurred at depths shallower than 105 ft (erodability >3). Depths above 105 ft corresponded to erodability parameter greater than three and were too erosional to be considered for an ocean disposal location.

The interagency group considered an option of limiting the depth that provided a 10 ft buffer between the erodability depth (105 ft) and the top of the mound or other options, such as limiting the height of the disposal mounds to no more than 105 ft below Mean Lower Low Water (MLLW). After discussion, it was agreed that a buffer zone between the erosional depth and the top of the disposal mound was not necessary. Estimates of potential mound height were developed using the estimates of dredging volumes (~8 MCY) over the next 20 years. The disposal material from the dredging needs study would result in a mound approximately 10 ft high over 1 nmi² with a 10% buffer between the mound and the site boundary. Therefore, a depth of 115 ft represents the erosional depth (105 ft) plus the theoretical height of the disposal mound (10 ft). As a result, depths of greater than 115 ft were determined as the minimum depth for locating a disposal site (Figure 5).

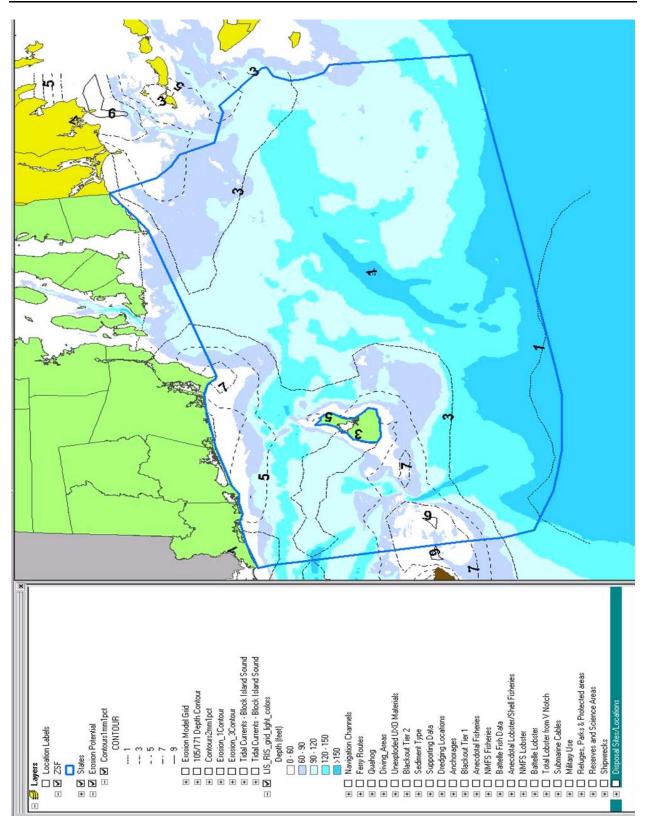


Figure 3. Predicted Sediment Erodability Parameter for 1.0 mm Grain Size for Typical Peak Tide and 1% Frequency of Occurrence Wave Conditions.

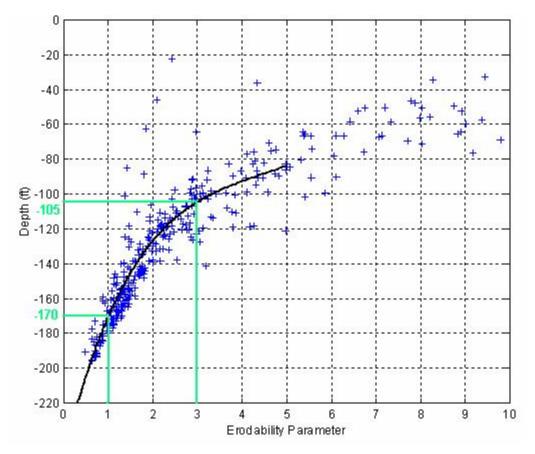


Figure 4. Predicted Relationship Between Depth and Sediment Erodability Parameter.

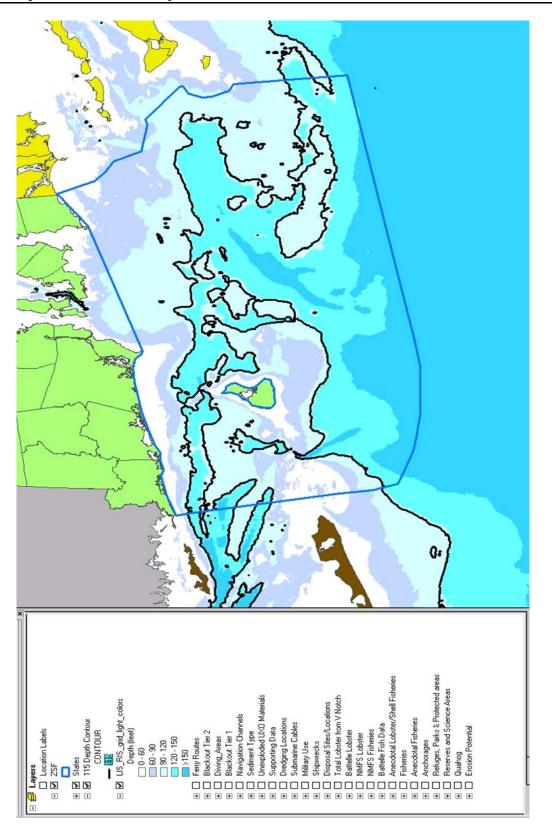


Figure 5. Depth Contour of 115 ft, the Minimum Depth for Locating a Disposal Site.

2.1.2 Areas of Conflicting Uses

The MPRSA criteria state that areas for ocean disposal of dredge material should be chosen to minimize the interference of disposal activities with other uses of the marine environment. Conflicting uses considered in Tier 1 screening included:

- Anchorages (MPRSA Criteria 228.5(a)),
- Reserves and science areas (MPRSA Criteria 228.5(b)),
- Beaches and amenities (MPRSA Criteria 228.5(b)),
- Conservation areas (sanctuaries, wildlife refuges, national seashores, parks, fish havens, artificial reefs) (MPRSA Criteria 228.5(b)),
- Active ordnance and military use (MPRSA Criteria 228.6 (a)(8)),
- Active Utilities (pipelines, cable areas, etc) (MPRSA Criteria 228.6 (a)(8)), and
- Historic or culturally important shipwrecks (MPRSA Criteria 228.6(a)(11)).

Anchorages are located off the coast of southeastern MA and off Montauk Point, New York (NY) in western Block Island Sound in areas well outside of the boundaries of the ZSF (Figure 6). A 0.25 nmi buffer was placed around each anchorage, and these areas were excluded from consideration in Tier 1 screening. The interagency group agreed that ODMDS alternatives would not include state or federal reserve areas, science areas, beaches, or other conservation areas (Figure 6). The interagency group also agreed that active ordnance and military use areas, and pipeline and cable areas would be avoided (Figure 7). In addition, shipwrecks, which provide habitat relief and recreational diving, and an additional 0.25 nmi buffer were excluded during screening (Figure 8).

2.1.3 Summary of Tier 1 Considerations

Once the areas of conflicting uses were determined, these areas were removed from further consideration (Figure 9). Depths less than 115 ft, the minimum depth for locating a disposal site based on the erosional depth and theoretical mound height, were then excluded during Tier 1 screening (Figure 10). While depth was used as the exclusionary layer for erosion, the erodability parameter utilized some additional physical parameters, such as wind and waves, to estimate sediment resuspension. The interagency group felt that those results should also be considered as an exclusionary layer. The areas with an erodability parameter of greater than three are shaded as gray (Figure 10). The areas of high sediment erodability in the northwest corner of the ZSF also coincide with areas of strong currents (Figure 11), which further supports the exclusion of this area from consideration as a location for a disposal site. The unshaded (clear) areas of the ZSF were considered in the Tier 2 evaluation.

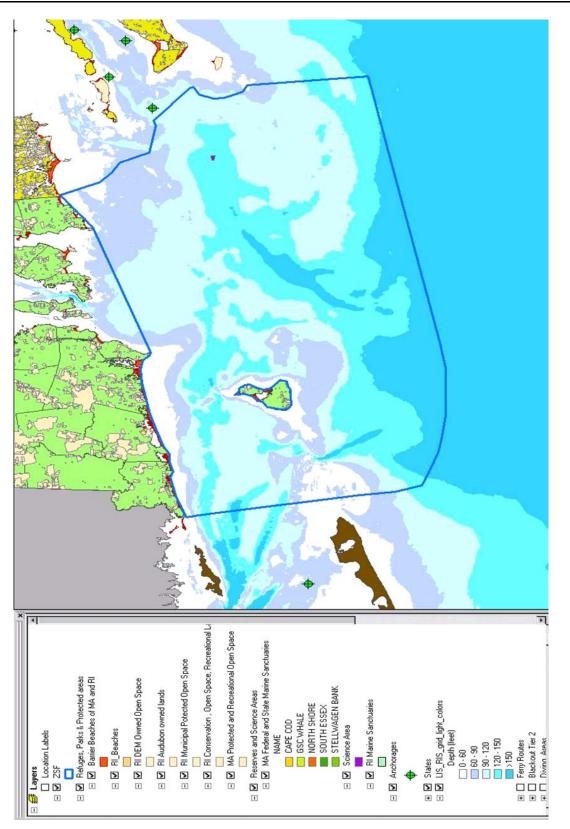
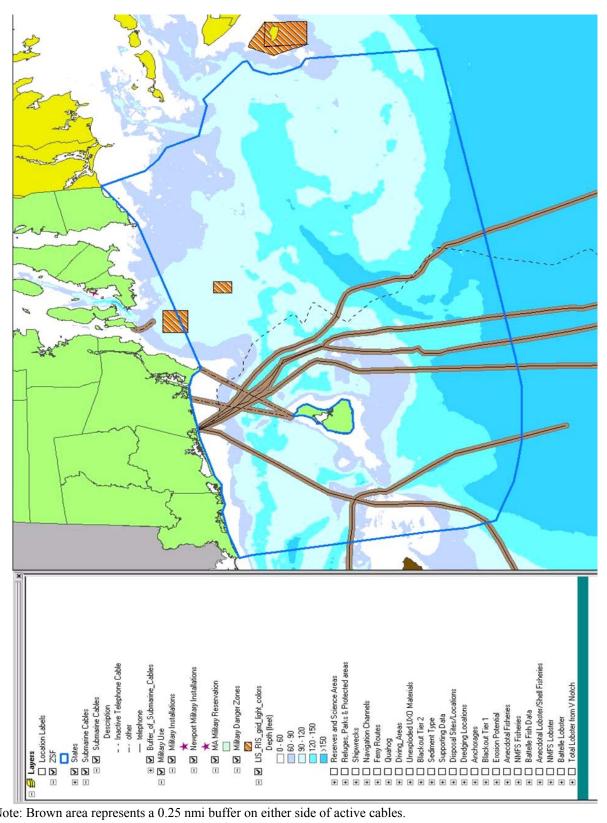



Figure 6. Anchorages, Reserve Areas, Science Areas, Beaches, or Other Conservation Areas.

Note: Brown area represents a 0.25 nmi buffer on either side of active cables.

Figure 7. Active Ordnance, Military Use, Pipeline, and Cable Areas.

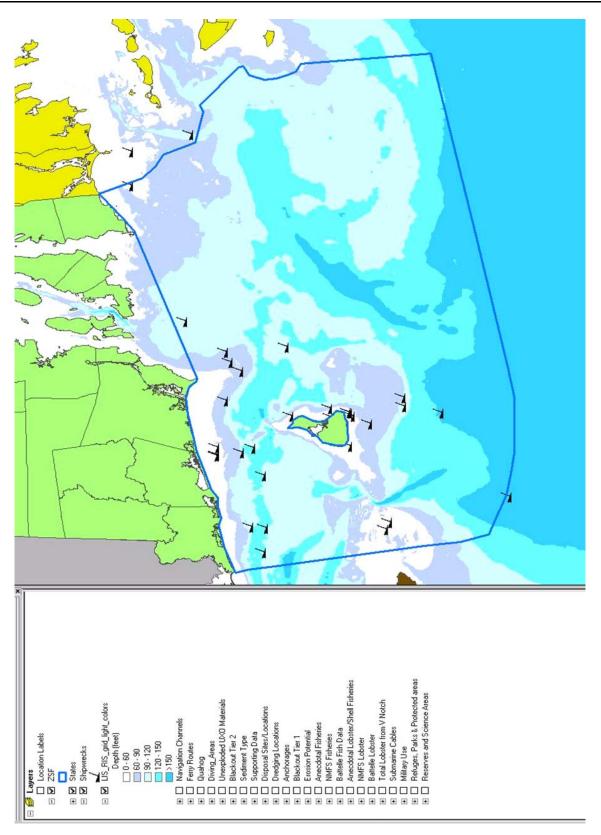


Figure 8. Shipwrecks within the ZSF.

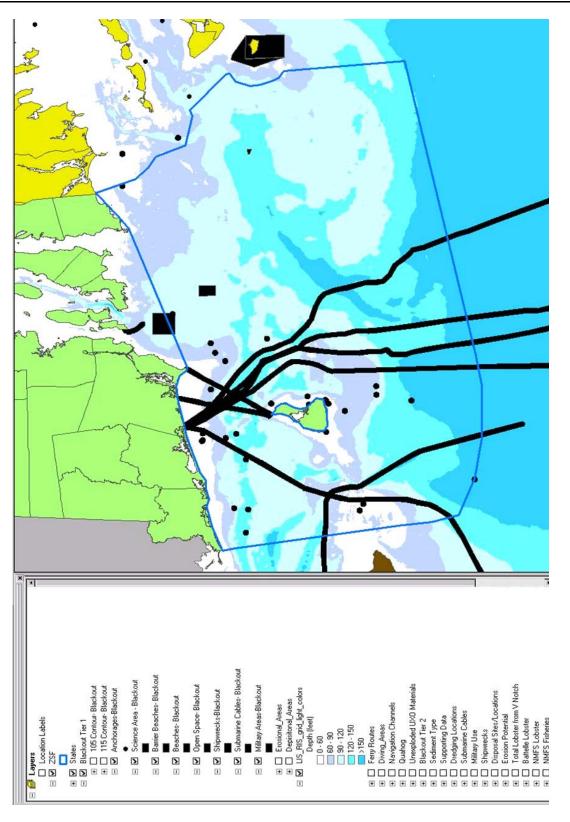


Figure 9. Conflicting Uses Areas Excluded During Tier 1 Screening.

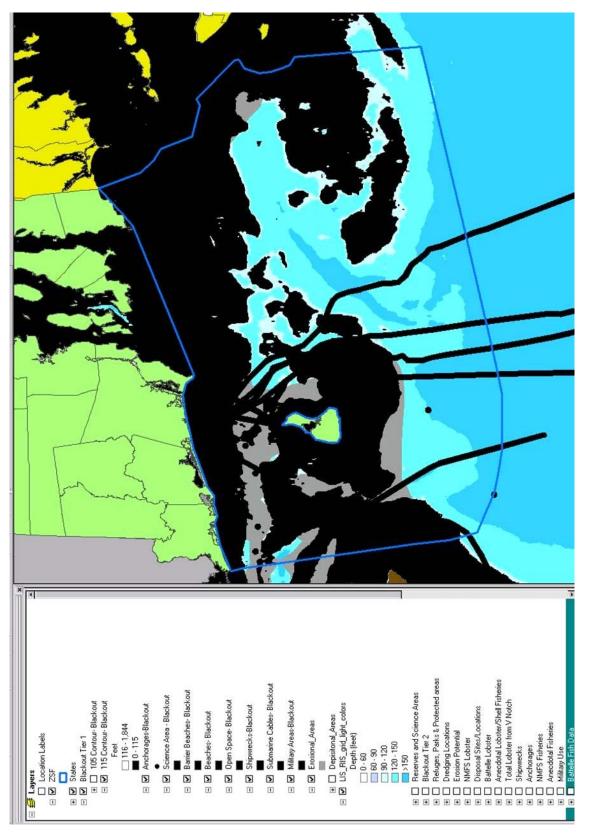


Figure 10. Tier 1 Screening Summary.

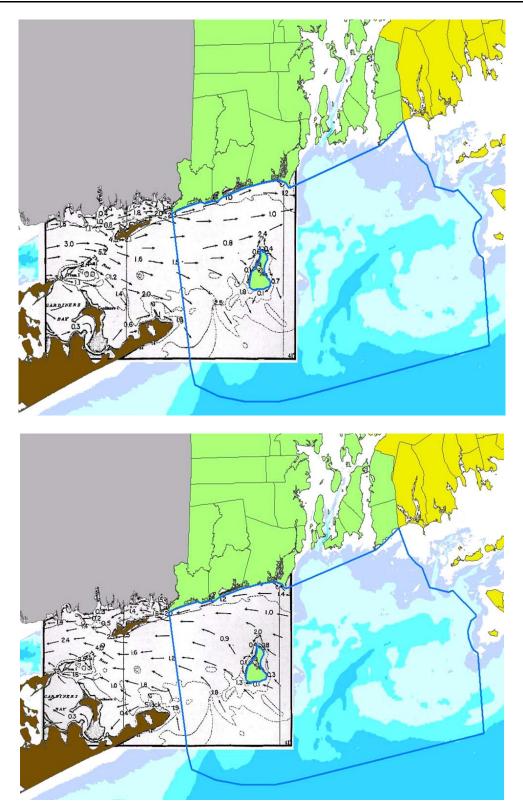


Figure 11. Ebb (top) and Flood (bottom) Currents in the Northwest Corner of the ZSF.

2.2 Tier 2 Screening Approach and Results

The objective of the Tier 2 screening was to further screen the area where sites would not likely be considered within the ZSF and, if possible, determine actual areas for further evaluation in the EIS. The three levels of quantitative screening values were used to further evaluate this area (Appendix A). The screening criteria considered in Tier 2 screening included:

- Fish and shellfish resources (finfish, lobster, and shellfish),
- Navigation,
- Diving areas,
- Unexploded ordnances (UXOs),
- Economics,
- Tidal ellipses,
- Grain size distributions, and
- Historic and current disposal sites.

2.2.1 Minimizing Impacts to Fish and Shellfish Resources

The Working Group identified the potential impacts to fisheries by the designation of a disposal site as a major concern. The screening criteria developed by the Corps and EPA excluded highly productive fish, lobster, and shellfish habitat and concentration zones from consideration to minimize significant impacts of an ODMDS to these resources.

Fish

Fishing areas within the ZSF were identified by various sources, including the Rhode Island Resource Protection Project (RIRPP), Rhode Island Marine Resource Uses GIS Data (URI and RI CRMC, 2003), Metcalf and Eddy (1987), and day fishermen. These areas were excluded from consideration during Tier 2 screening (Figure 12).

The total fish catch-per-unit-effort (CPUE) data (based on a 30 minute tow) collected by NMFS and the Corps was reviewed and mapped spatially to confirm significant fishing areas previously identified (Figure 13). The NMFS has conducted seasonal trawl surveys in the coastal waters off the U.S. since the late 1960s using a stratified random sampling design to identify tow locations. Since 1990, NMFS has collected data at 102 stations within or adjacent to the ZSF. The data used for this screening layer included spring and fall surveys from 1990 to 2002, and winter surveys from 1992 to 2002.

Trawl surveys were also conducted by the Corps at several locations within the ZSF in September 2001, June 2002, November 2002, and December 2002. The November and December 2002 fish trawl surveys were conducted to evaluate whether the deeper regions, surrounded by more shallow areas, tend to congregate fish as indicated by several commercial fishermen who fish within the ZSF. The methods used for Battelle surveys were slightly different from those conducted by NMFS, and results cannot be directly compared between

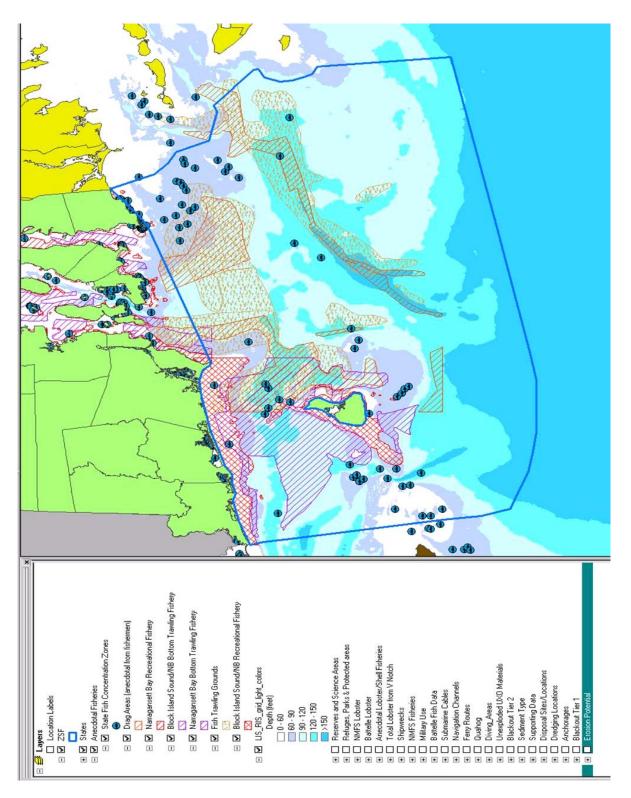
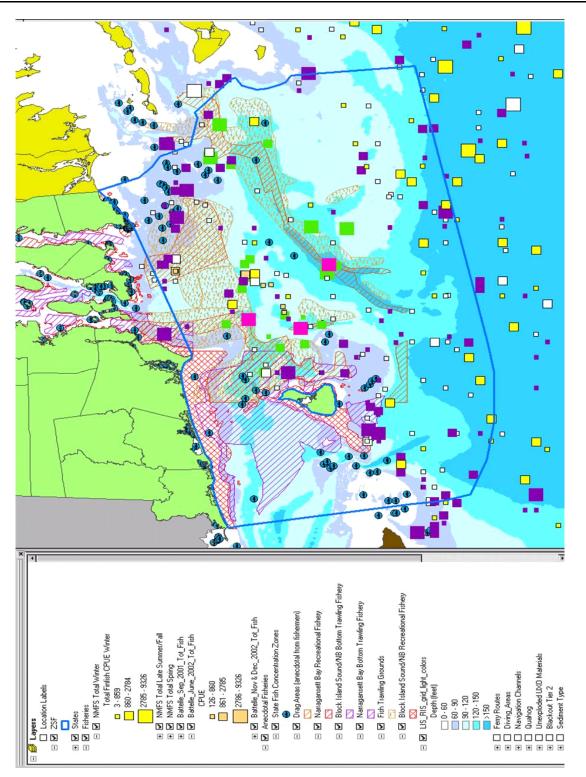



Figure 12. Anecdotal Fishing Areas in the ZSF Identified by Day Fishermen.

Note: white = NMFS Spring, purple = NMFS Late Summer/Fall, magenta = Battelle September 2001, green = Battelle November/December 2002.

Figure 13. Total Fish CPUE Data Collected by NMFS and the Corps with Anecdotal Fishing Areas.

programs. However, the results can discriminate differences in catch among the specific sites surveyed. The data and the method of applying it to the layers were discussed with the Federal and state cooperating agencies to solicit their support for the application to the layers.

All NMFS and Corps trawl data were categorized into three levels using a statistical formula that identified natural breakpoints in the data. These natural breakpoints (derived from the NMFS and Corps data) served to rank the finfish catch into three levels that indicated a particular location (at the time of sampling) was highly productive (CPUE $\ge 2,785$), of medium productivity (CPUE $\ge 860 \le 2,784$) or of low productivity (CPUE ≤ 860). Areas with high CPUE values generally coincided with areas identified as fish concentration zones or as fishing grounds by fishermen.

Lobster

Lobstering areas identified within the ZSF were delineated by lobstermen during interviews and at Working Group meetings (Figure 14). These areas were excluded from consideration during Tier 2 screening. The lobster CPUE data (based on a 30 minute trawl) collected by NMFS and the Corps were reviewed by the interagency group and were used to confirm lobstering areas identified by the lobstermen (Figure 15). Total lobster catches from the V-notch program were also used to understand areas where the most lobster catches were being reported.

As discussed in the Fish section, NMFS conducts research trawls within, and in close proximity to, the ZSF. These NMFS research trawl surveys also capture lobsters. CPUE data from the fall, winter, and spring surveys from 1990 through 2002 were used to calculate a CPUE for any given trawl location. The Corps also collected lobster in finfish trawls collected in September 2001, June 2002, November 2002, and December 2002.

All NMFS and Battelle trawl lobster data were categorized into three levels using a statistical formula that identified natural breakpoints in the data. These natural breakpoints served to rank the lobster catch into three levels that indicated a particular location (at the time of sampling) was highly productive (CPUE ≥ 114), of medium productivity (CPUE $\geq 31 \leq 113$) or of low productivity (CPUE ≤ 30).

The National Oceanic and Atmospheric Administration (NOAA) Restoration Center, in response to the North Cape oil spill in 1996, began the "V-notch" program. This program is designed to protect and restock lobster resources of the coast of Rhode Island. V-notching of legal sized berried female lobsters is done using a special tool that notches the telson (tail) of appropriate individuals. These lobsters are released back into the environment and cannot be harvested until the notch reaches a size of approximately 0.25 inches, following several molts. As part of this program, lobstermen voluntarily report the total number of lobster (v-notched and landed) caught offshore of RI. These data only indicate where the most lobster catches were reported. Since the program is voluntary, only data that is reported by lobstermen who participate in the program is collected. Data is also reported by grid areas, so it is not possible to distinguish the exact location within the grid where the lobster catches were made. Areas with the highest reported lobster catches from the V-notch program, however, did appear to coincide with areas of high lobster CPUE values (NMFS and Battelle) and anecdotal fishing areas.

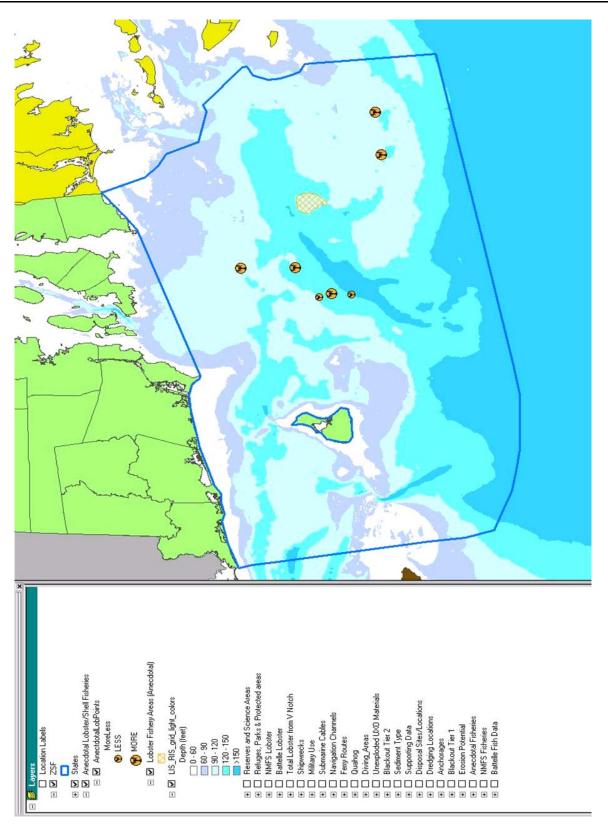
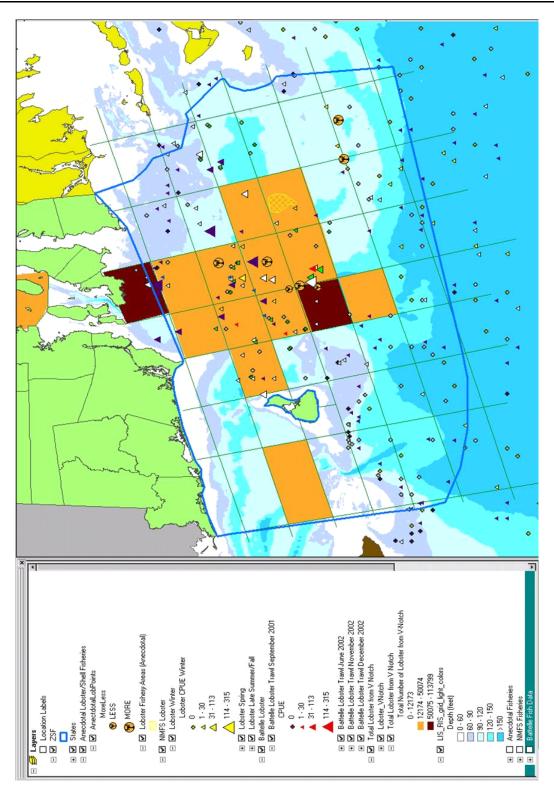



Figure 14. Anecdotal Lobstering Areas in the ZSF Identified by Lobstermen.

Note: white = NMFS Spring, purple = NMFS Late Summer/Fall, magenta = Battelle June 2002, green = Battelle November 2002, light green = December 2002.

Shellfish

Shellfish habitats within the ZSF have been identified using several historical sources of information (Corps, 1976; Fogarty, 1979; Battelle, 1998), recent data collected by the Corps, and anecdotal information from local fishermen (Figure 16). The 1976 Fall River Harbor Improvement Dredging Project Draft EIS identified shellfish beds south of Narragansett Bay, northeast of Block Island, and west of Martha's Vineyard (Corps, 1976).

The distribution of ocean quahogs in Rhode Island Sound was studied in detail by Fogarty (1979, 1981), who used a hydraulic clam dredge to sample at 212 stations. Ocean quahogs occurred at 139 stations (66%) and were distributed in relatively large-scale aggregations within the study area. The areas of high densities (\geq 1.01 kilogram [kg] per square meter [m²]) occurred in the southeast quadrant of the ZSF, following a "line" running southwest of Gay Head (Figure 16). A second area of high densities occurred in the north central part of the ZSF, generally along a line from Block Island northeast to Nashawena Island. The other important information provided by the dredge data is that the clam distribution is very patchy and densities vary considerably over relatively small spatial scales (about the scale between tows, which appears to be as small as about one nmi). Pockets of high clam densities are closely flanked by pockets of low densities, or even areas without clams. Shellfish sampling conducted by Battelle in 1997 and by the Corps in 2002 confirmed that shellfish were still present in some of the shellfish beds identified in 1976.

The three levels of quantitative screening values were developed based on the station specific quahog density data (kg/m²) provided by Fogarty (1979). The natural break method was used to derive the screening criteria values for ocean quahog by identifying breakpoints between classes of data using a statistical formula (Jenk's optimization). Jenk's method minimizes the sum of the variance within each of the classes. Natural Breaks finds groupings and patterns inherent in the data. The station specific data, however, could not be spatially mapped, due to missing coordinate information. Therefore, a contour map developed by Fogarty (1979) was digitized into ArcView, and the classification levels used by Fogarty to form the quahog distribution contours were used to categorize the productivity of the shellfish areas. Areas of very high ($\geq 1.01 \text{ kg/m}^2$), high (0.51 – 1.01 kg/m²), and medium (0.21 – 0.51 kg/m²) quahog productivity were excluded from consideration in Tier 2 screening, using a graded scale of shading (black, dark gray, and light gray).

2.2.2 Minimizing Impacts to Navigation

Interference with navigation was considered an important consideration for Tier 2 screening. Areas within active shipping lanes, ferry routes, and lightering areas were excluded from consideration (Figure 17). In addition, a 0.5 nmi buffer on shipping lanes and ferry routes was incorporated into this screening layer as a safety factor.

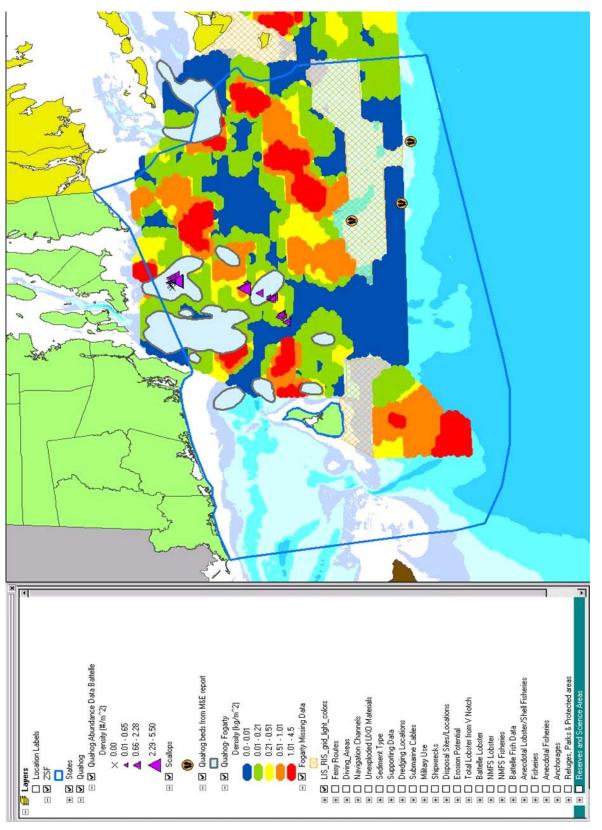


Figure 16. Shellfish Habitat within the ZSF.

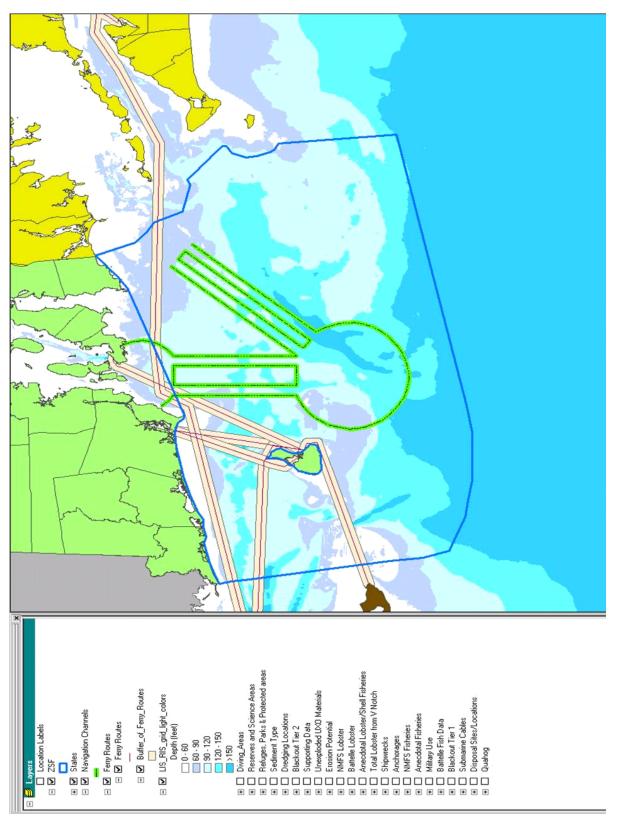


Figure 17. Navigational Uses of the ZSF (Shipping Lanes, Ferry Routes, and Lightering Areas).

2.2.3 Minimizing Impacts to Diving Areas

The Working Group was also concerned about the impact to recreational diving. Diving areas within the ZSF were identified from NOAA charts and diving club databases that are available on the internet. A 0.25 nmi buffer was added around locations known to have diving activity to minimize impacts to diving areas, and these areas were incorporated into a screening layer (Figure 18). Note that many of these diving locations coincide with shipwreck locations.

2.2.4 Other Considerations

Additional criteria considered during the Tier 2 screening included:

- Unexploded Ordnances (UXOs),
- Economics,
- Transport of water during typical tidal cycles,
- Grain size distributions, and
- Historic disposal sites.

Unexploded Ordnances (UXOs)

There are 11 identified locations of unexploded ordnances (UXO) in the ZSF. These include unexploded torpedoes, unexploded depth charges, and unexploded bombs (Figure 19). There is no evidence that these UXO's are going to be removed; some have been there since the 1940s. The interagency group agreed that for safety reasons, UXOs within the ZSF should be excluded during Tier 2 screening. For additional safety, a 0.25 nmi buffer was placed around each UXO.

Economics

A screening layer was developed to further refine the economically effective distance from the dredging centers to the disposal mound. The southern boundary of the ZSF was set at approximately 20 nmi from the dredging center on Block Island by considering all the potential dredging locations (Corps, 2002b). Further review of the information in the ZSF report identified that only the centers on Block Island and Gay Head caused the boundary to be located approximately 30 nmi offshore. Examination of the cost tables for typical barge operations (Table 4, Page 14 of Corps, 2002b) determined that a more appropriate economic distance from most harbors in Rhode Island and southeastern Massachusetts was approximately 20 nmi from the coast (Figure 20). This was found to be reasonable for the greatest haul distance in upper Narragansett Bay. Transfer distances of greater than 20 nmi off shore were considered less favorable from a cost perspective. After discussion, it was agreed that the area of the ZSF greater than 20 nmi from the coast would be removed from consideration.

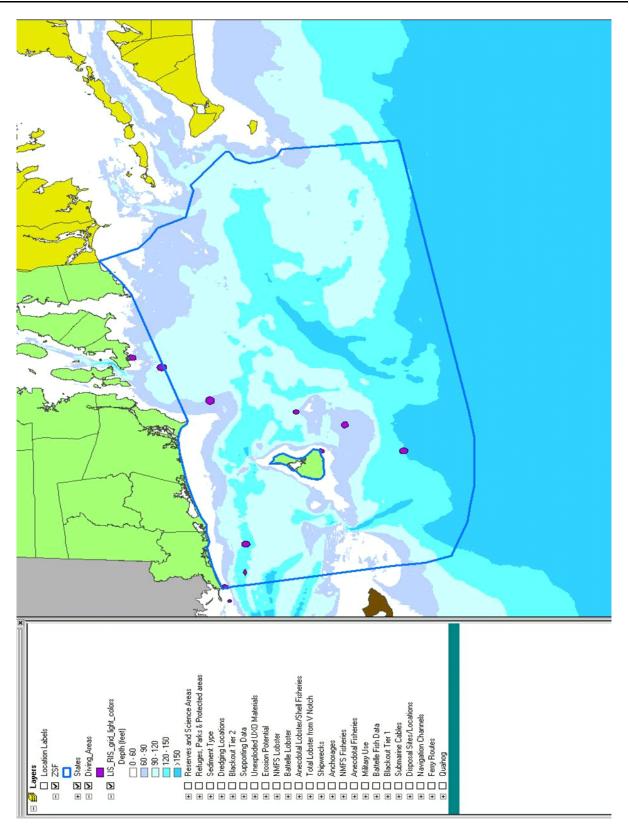


Figure 18. Diving Areas within the ZSF.

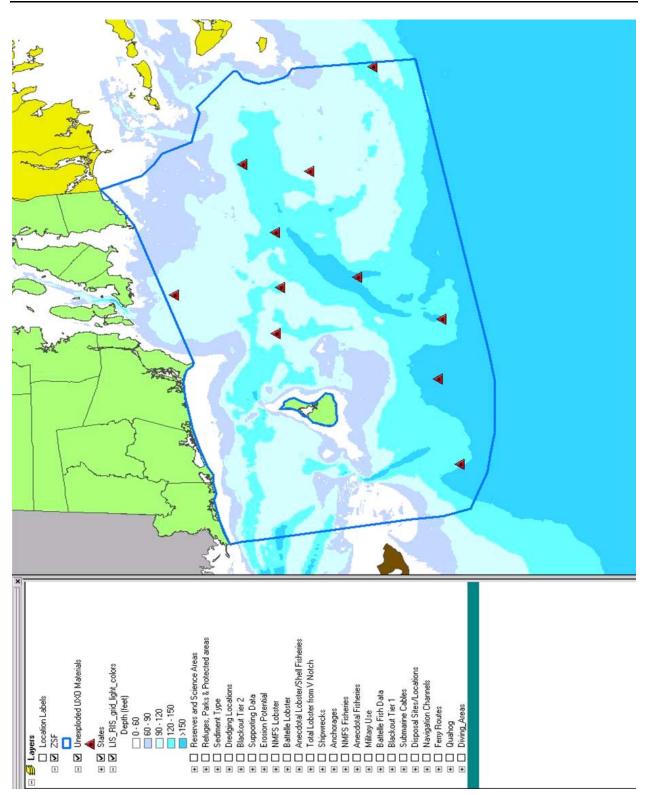


Figure 19. UXOs within the ZSF.

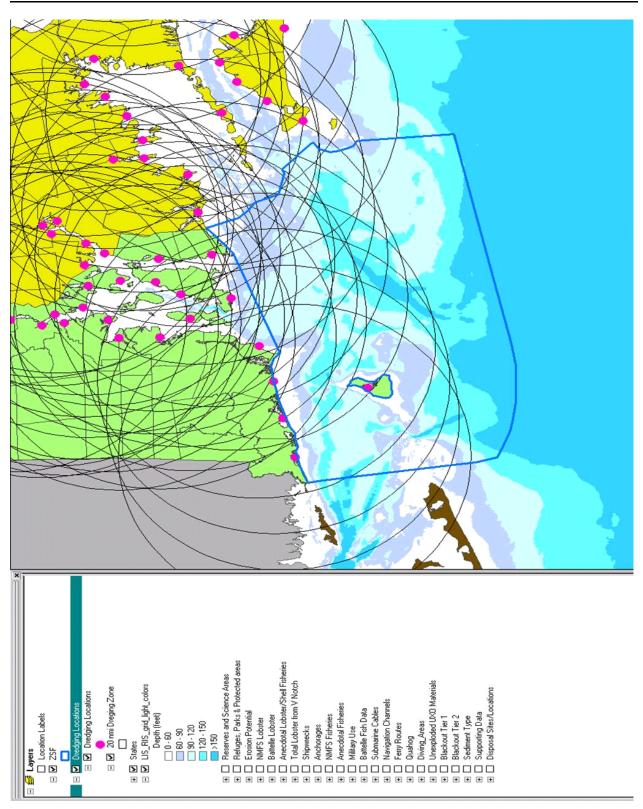


Figure 20. Concentric Circles with 20 nmi Radius from Dredging Centers in RI and MA.

Tidal Ellipses

Tidal currents are driven by the regular pattern of the rise and fall of the moon and as such change from flood to ebb and back to flood again every 12.42 hours (hr). In a narrow channel the flow is rectilinear, flooding and ebbing along a straight line, but in open water it is more elliptical or even circular. A tidal ellipse is drawn to represent the tidal current over the tidal cycle, such that the current flows in the direction of a vector that originates at the center of the ellipse and terminates on the perimeter. The vector moves around the ellipse every 12.42 hr. The direction and duration of the tidal currents within the ZSF were examined to understand the actual trajectory a packet of water might travel through the tidal cycle, thereby showing the extent of travel of the tidal driven flow. The tidal ellipses at the Separation Zone Site (Site 69B) show that the direction of the tides are from the northwest to southeast, and the movement of the surface waters are greater than the bottom waters (Figure 21). These tidal currents are expected to be similar throughout the central and eastern portions of the ZSF.

Grain Size Distributions

Historical studies have been conducted to determine the grain size distribution within the ZSF (McMaster, 1960; Knebel, *et al.*, 1982). Sampling conducted by the Corps in November and December 2002 was also used to understand the grain size of sediments in Rhode Island Sound. These data were used to establish whether areas remaining after screening are likely to be erosional (Figures 22 and 23). Sediment type was not a data layer used to include or exclude locations, due to the paucity of quantitative data.

Fogarty's studies (1979, 1981) correlated sediment grain size with distribution of ocean quahogs in Rhode Island Sound. The highest densities of ocean quahogs were found in sediments with high amounts of medium sand and shell fragments. Densities were lowest in high silt/clay or coarse sand-gravel sediment (Fogarty, 1981). This information was used to extrapolate grain size from the distribution and density of ocean quahogs in the ZSF (Figure 24). Some areas south of Block Island and west and southwest of Martha's Vineyard could not be sampled with the dredge, due to obstructions on the sea bed.

Historic Disposal Sites

There was agreement among members of the interagency group that preference should be given to historical disposal sites for siting alternative ODMDS in the RIR. Use of previously used disposal sites would avoid modifying the bottom type and habitat of additional areas of the ZSF. The historic disposal sites in the RIR are presented in Figure 25.

2.2.5 Summary of Tier 2 Considerations

Figure 26 shows the areas that were screened out as unacceptable for an ocean disposal site and those that remained for further evaluation if only Tier 2 screening information were used to identify candidate sites. Areas that were important fish and shellfish habitats, that were used for navigation and diving, that contained UXOs, and that were further than an economically effective distance from the dredging centers were all removed from consideration during Tier 2 screening.

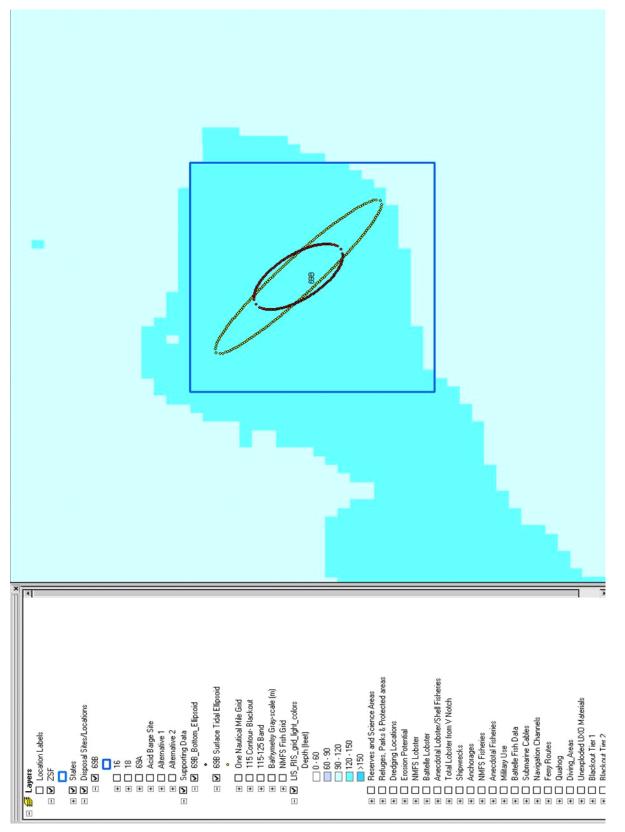


Figure 21. Tidal Ellipse at the Separation Zone Site (Site 69B).



Figure 22. Grain Size Distribution within the ZSF by McMaster and Battelle.

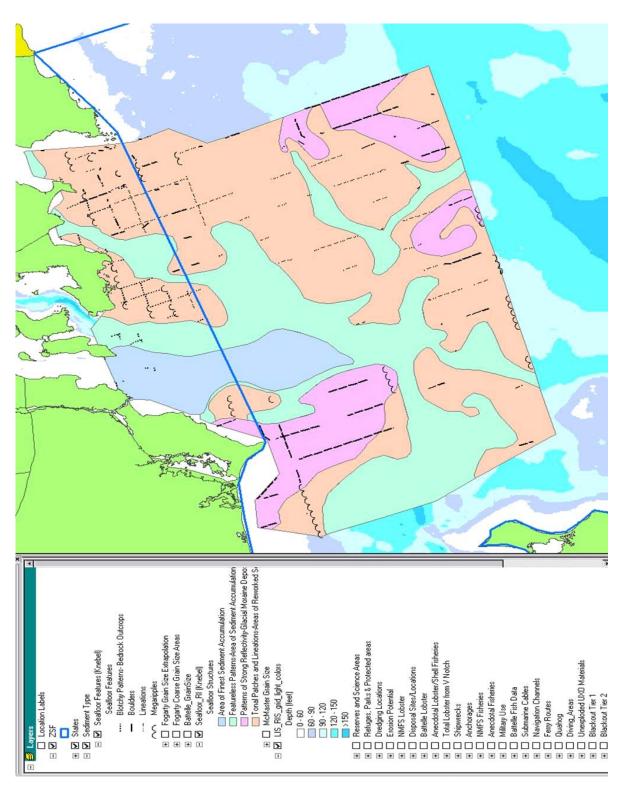


Figure 23. Grain Size Distribution by Knebel.

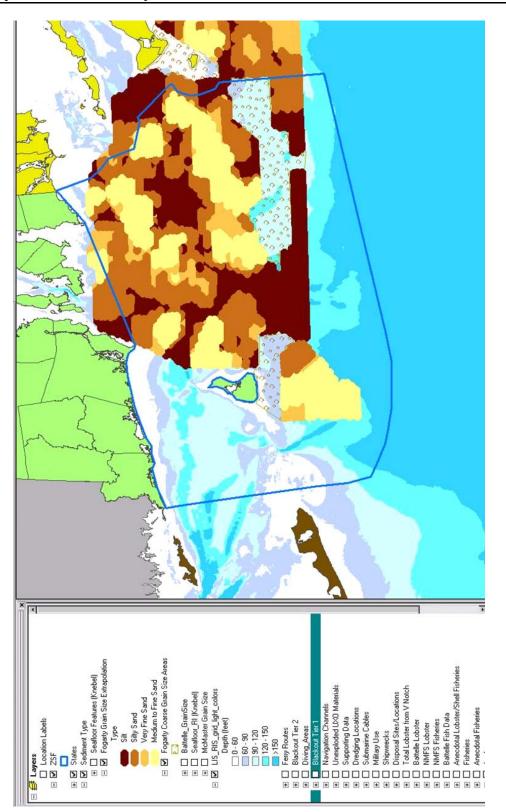


Figure 24. Grain Size Information Extrapolated from Ocean Quahog Distribution.

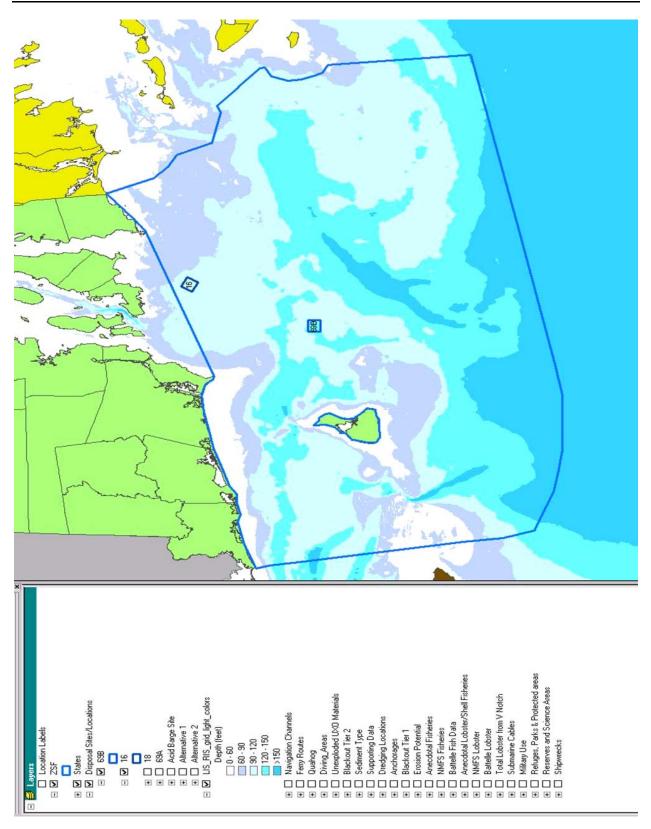


Figure 25. Historic and Current Disposal Sites within the ZSF.

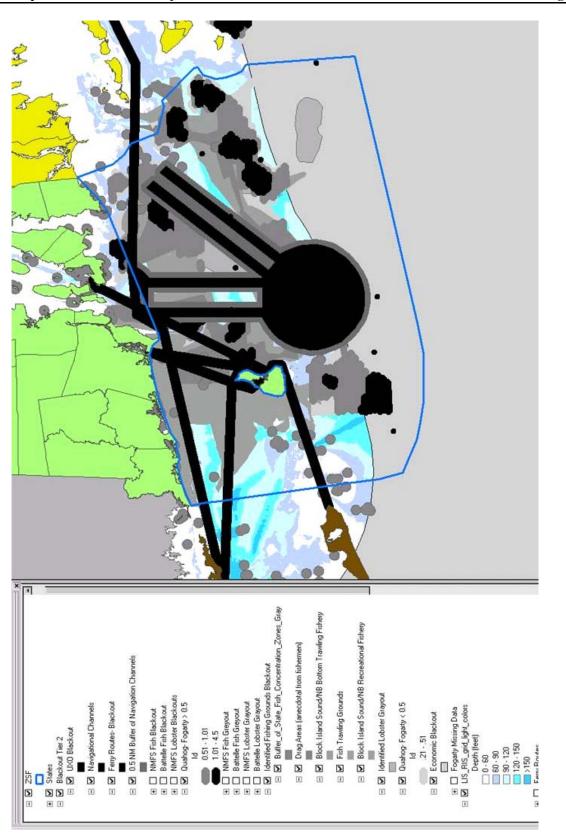


Figure 26. Tier 2 Screening Summary.

2.2.6 Completed Screening

The areas removed from further consideration by both the Tier 1 and Tier 2 screening are shown in Figure 27. Of the areas that remained after screening, the northwest corner of the ZSF was considered unacceptable for locating an ocean disposal site due to the high currents in that area and the desire to avoid dispersion of the dredged material once it is disposed. The area to the southwest of Block Island was also excluded from consideration based on information that the trough in that region is used as a migratory route for lobster, high currents, and other significant fisheries. The area to the southwest of Martha's Vineyard was also considered unacceptable due to its close proximity to highly productive shellfish beds.

Two areas were then recommended by the interagency group for further analysis and consideration in the EIS (Figure 28). The first area was located near Site 69B, which is being used for Providence River and Harbor Maintenance Dredging Project. The second area was located about 9 nmi to the east of Site 69B in 120 - 150 ft of water. Latitude and longitude information for these two areas is presented in Table 3. These areas were recommended for further evaluation and are the areas within which alternatives for evaluation in the EIS could be identified. Specific sites could not be determined due to lack of data in the eastern area (Area E). Moreover, the screening applied to these data indicated the western area (Area W) needs further survey work due to the overlap of the present Site 69B with the 0.5 nmi buffer area applied to the inbound navigation lane to Narragansett Bay. Thus, further survey work was determined as necessary in this area also. Once the data are available, the agencies will identify the specific footprints to evaluate as alternative sites in the EIS.

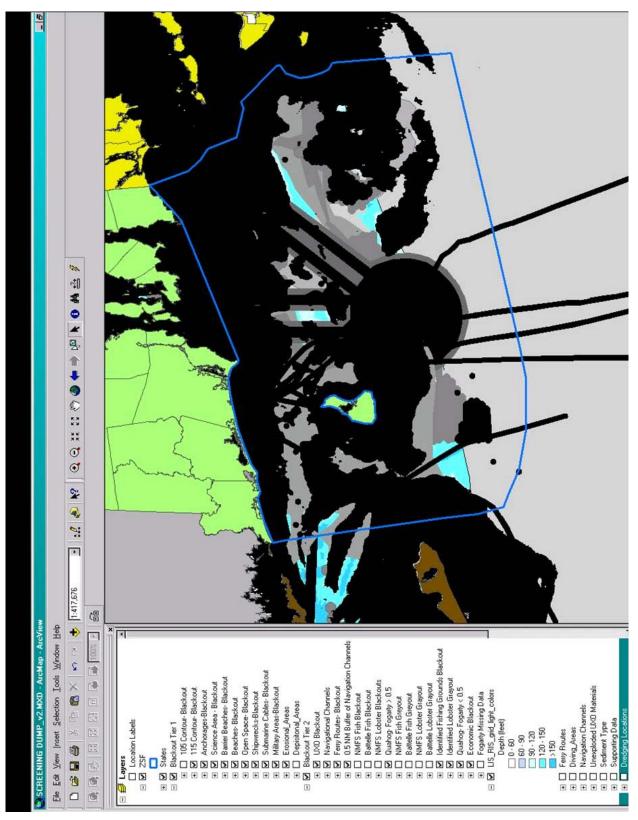


Figure 27. Tier 1 and Tier 2 Screening Results.

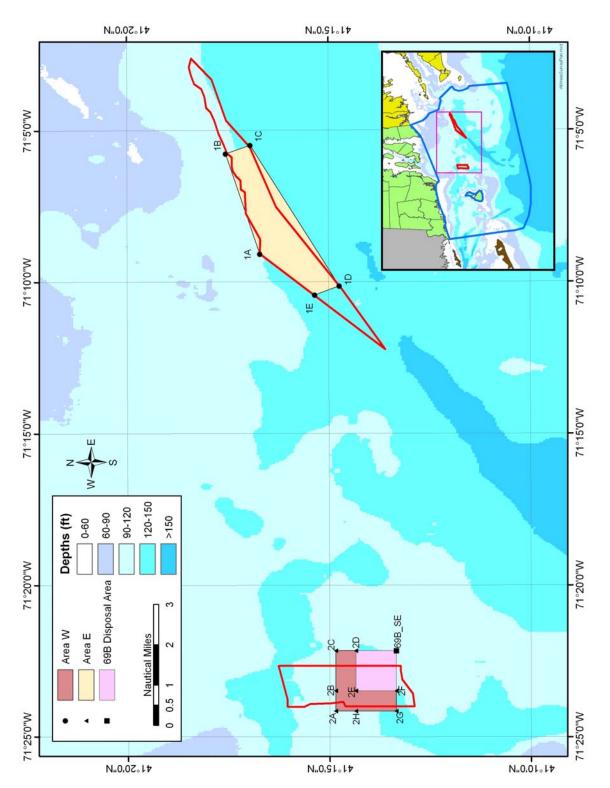


Figure 28. Recommended Areas (Areas E and W) Resulting from the Screening Process.

Point	Longitude (degree minutes)	Latitude (degree minutes)
1A	71° 9.082′	41° 16.714′
1B	71° 5.771′	41° 17.555′
1C	71° 5.492′	41° 16.945′
1D	71° 10.141′	41° 14.750′
1E	71° 10.433′	41° 15.359′
2A	71° 24.142′	41° 14.855′
2B	71° 23.480′	41° 14.855′
2C	71° 22.154′	41° 14.853′
2D	71° 22.155′	41° 14.353′
2E	71° 23.480′	41° 14.355′
2F	71° 23.482′	41° 13.354′
2G	71° 24.145′	41° 13.355′
2H	71° 24.143′	41° 14.355′
69B_SE	71° 22.157′	41° 13.353′

Table 3. Latitude and Longitude for Area E and Area W.

3.0 DATA GAPS

The interagency group discussed the data collection needs for Area E and Area W. Recent data collection efforts have been made by the Corps at Area W, but additional data will need to be collected west and north of Site 69B. No recent or historical data exist for Area E, and a complete data collection effort will need to be conducted. Data collection needs for the western portion of Area W and for the entire Area E include:

- Detailed bathymetry
- Side scan
- Magnetometer
- Current meter data, if data are not available from the WHOI buoy farm
- Sediment Profile Imaging (SPI)
- Sediment chemistry
 - Grain size/TOC
 - o Selected metals and organics
- Benthic infauna
- Finfish and lobster trawls
- Unvented lobster pots
- Quahog trawls

4.0 **REFERENCES**

Battelle. 1998. Shellfish Sampling and Site Characterization, Narragansett Bay and Rhode Island Sound Proposed Disposal Sites. Prepared under Contract No. DACW33-96-D-0005, Delivery Order No. 14 for the U.S. Army Corps of Engineers.

- Butman, B., M. Noble, and D.A. Folger. 1979. Long-Term Observations of Bottom Current and Bottom Sediment Movement on the Mid-Atlantic Continental Shelf. *Journal of Geophysical Research*. Vol.84, No. C4, pp. 1187-1205.
- Corps. 1976. Fall River Harbor Improvement Dredging Project and Fall River, Providence River Harbors Dredging Action with Ocean Disposal at Browns Ledge. Draft Environmental Impact Statement. U.S. Army Corps of Engineers, New England Division. Waltham, Massachusetts.
- Corps. 2002a. Task 12F Dredging Needs Study. Rhode Island Region Long-Term Dredged Material Disposal Site Evaluation Project. Prepared under Contract No. DACW33-01-D-0004, Delivery Order No. 2. Prepared by Battelle and the Maguire Group Inc. for the U.S. Army Corps of Engineers. November 2002.
- Corps. 2002b. Task 13 Zone of Siting Feasibility. Rhode Island Region Long-term Dredged Material Disposal Site Evaluation Project. Prepared under Contract No. DACW33-01-D-0004, Delivery Order No. 2. Prepared by the Maguire Group Inc. for the U.S. Army Corps of Engineers. September 2002.
- Fogarty, M.J. 1979. Assessment of the ocean quahog, *Arctica islandica*, resource in Rhode Island Sound and south of Martha's Vineyard, MA. RIDEM, Division of Fisheries and Wildlife.
- Knebel, H.J., S.W. Needell, and C.J. O'Hara. 1982. Modern sedimentary environments on the Rhode Island Inner Shelf, off the eastern United States. *Marine Geology*. 49:241-256.
- McMaster, R.L. 1960. Sediments of Narragansett Bay system and Rhode Island Sound, Rhode Island. *Journal of Sedimentary Petrology*. 30(2):249-274.
- Metcalf & Eddy. 1987. Designation of Dredged Material Disposal Site(s) for Rhode Island and Southeastern Massachusetts: Task 3 – Historical Overview. September 1987. 43 pp. + Appendices.
- Petruny-Parker, M., Boyd, J., Rubinstein, N., Carey, D., and P. August. 2003. Designation of an Offshore Long-Term Dredged Material Disposal Site(s) for the Rhode Island Region: Evaluation Process. Final Report on Working Group Meetings. Coastal Institute, University of Rhode Island. January 2003. 21 pp. + Appendices.
- URI and RI CRMC. 2003. http://www.edc.uri.edu/fish/maps.html.
- USEPA. 1986. Ocean Dumping Site Designation Delegation Handbook for Dredged Material. Office of Marine and Estuarine Protection, Washington, DC. 199 pp.

Appendix A

Quantitative Screening Values for RIR Screening Criteria (Levels 1, 2, and 3)

RHODE ISLAND REGION SCREENING CRITERIA (5/7/2003)

TIER 1	LEVEL 1	LEVEL 2	LEVEL 3
	Area Exclusion		
ZSF	Site is not within ZSF		
Depth of Site - Erosional Depth	Depth where sediment mobility is >3	Depth where sediment mobility is >1 and <3	Depth where sediment mobility is <1
Depth of Site	Site is < 105 feet deep	Site is > 105 feet and < 170 feet deep	Site is > 170 feet below deep
Scientific Research	Significant impact to scientific research	Insignificant impact to scientific research	No impact
Recreational Activities	Significant impact to recreational activities (fishing, diving, whale watching)	Insignificant impact to recreational activities (fishing, diving, whale watching)	No impact/or mitigatable through management
Proximity to Wildlife Refuge	Significant disturbance wildlife refuge (see list)	Insignificant disturbance wildlife refuge (see list)	No impact/or mitigatable through management
Protected Areas	Site is a protected area	Site near protected area	Site far from protected area
Proximity to Sensitive Areas	Significant WQ impact to beach, shoreline, marine sanctuary (see list)	Insignificant WQ impact to beach, shoreline, marine sanctuary (see list)	No impact/or mitigatable through management
T and E Species (None)	Significant impact to threatened or endangered species	Insignificant impact to threatened or endangered species	No impact/or mitigatable through management
Cultural and Historical	Significant impact to cultural and historical resources	Insignificant impact to cultural and historical resources	No impact
Military Zone		Site within active military zone	Site not within military zone
Active Utility Lines	Utility area impacted	Site located near (within ¹ / ₂ nm) active utility zone	Site distant (> ½ nm) from active utility zone

TIER 2	LEVEL 1	LEVEL 2	LEVEL 3
Finfish Habitat –	Area is a highly	Site is a medium productive	Site is a low productive
Total CPUE	productive finfish habitat	finfish habitat (\geq 860 CPUE	finfish habitat (<u><</u> 859
	$(\geq 2785$ Catch Per Unit	and ≤ 2784 CPUE)	CPUE)
	Effort [CPUE]*)		
Finfish Habitat –	Area is a highly	Site is a medium productive	Site is a low productive
Top 10 Commercial	productive finfish habitat	finfish habitat (≥ 665 CPUE	finfish habitat (<u>≤</u> 664
Species	(<u>> 2245 CPUE</u>)	and < 2244 CPUE)	CPUE)
Lobster Habitat	Area is a highly	Site is a medium productive	Site is a low productive
productive lobster ha		lobster habitat (<u>></u> 31 CPUE	lobster habitat (≤ 30
	(≥ 114 CPUE)	and <u><</u> 113 CPUE)	CPUE)

Shellfish Habitat	Area is a highly	Site is a medium productive	Site is a low productive
(Ocean quahog**)	productive shellfish	shellfish habitat (≥ 0.652	shellfish habitat (≤
	habitat (\geq 2.28 kg/m ²)	kg/m^2 and $\leq 2.279 kg/m^2$)	0.651 kg/m^2)
Fish Migratory Path	Area significantly	Insignificant interference	Site does not interfere
	interferes with fish	with fish migration	with fish migration
	migration		-
Benthic Habitat	Site is characterized	Site is characterized mostly	Site is characterized
	mostly by climax Stage	by intermediate Stage II	mostly by pioneer Stage
III species		species	I species
Shipping Lanes	Within active shipping	Near (within $\frac{1}{2}$ nautical mile	Far (> $\frac{1}{2}$ nmi) from
	lane	[nmi]) active shipping lane	active shipping lane
Ferry Routes	Within ferry route	Near (within ¹ / ₂ nmi) ferry	Far (> $\frac{1}{2}$ nmi) from
-		route	ferry route
Historic Disposal	Not exclusionary	Not exclusionary	Previously used
			disposal site

*CPUE = number of organisms/30 minute trawl **Ocean quahog was the only shellfish species for which quantitative data were available. N/A = Not applicable

TIER 3***	LEVEL 1	LEVEL 2	LEVEL 3
Recreational Racing		Within recreational racing route	Outside recreational racing route
Birds	Significant impact to migratory/sea birds	Insignificant impact to migratory/sea birds	No impact/or mitigatable through management
Marine Mammals	Significant impact to marine mammals	Insignificant impact to marine mammals	No impact/or mitigatable through management
Sea Turtles	Significant impact to sea turtles	Insignificant impact to sea turtles	No impact/or mitigatable through management
Nuisance Species	Creates significant development of nuisance species	Creates insignificant development of nuisance species	No impact
Site Dimensions	Site is too small for mixing zone or volume of material		
Beneficial Use/Habitat Creation			Site provides beneficial use of dredged material

***No GIS layers are associated with Tier 3 criteria. These criteria will be interpreted in the EIS.

Marilyn Schluter - NOAA Federal <marilyn.l.schluter@noaa.gov>

NOAA Hydrographic Surveys H12298, H12299, H12386 3 messages

Marilyn Schluter - NOAA Federal <marilyn.l.schluter@noaa.gov> To: ruth.pierpont@oprhp.state.ny.us, crieth@mail.nysed.gov Wed, Mar 20, 2013 at 10:24 AM

Cc: bruce.terrell@noaa.gov, Aarc.S.Moser@noaa.gov, Tod.A.Haupt@noaa.gov, frank.cantelas@noaa.gov, Abigail.Higgins@noaa.gov, Castle.E.Parker@noaa.gov, marilyn.l.schluter@noaa.gov, Brian.Jordan@boemre.gov, Lawrence Krepp - NOAA Federal <Lawrence.T.Krepp@noaa.gov>

Dear Madam,

The National Oceanic and Atmospheric Administration's Office of Coast Survey (OCS) may have previously contacted you regarding hydrographic surveys in **Block Island Sound, NY**. These surveys have been completed. The complete Descriptive Reports for these surveys are available for your review on NOAA's public ftp web site. Please provide any comments regarding these surveys (please reference the survey numbers **H12298**, **H12299**, **H12386**) within 30 days to:

LT Abigail Higgins

Chief, Atlantic Hydrographic Branch

Work: 757-441-6746 Ext.200

Fax: 757-441-6601

E-Mail: Abigail.Higgins@noaa.gov

439 W. York St.

Norfolk, VA 23510

If we have not received a response in 30 days, we will assume that these surveys do not include any data of sufficient historical significance (for instance, an historic shipwreck whose location should not be made public knowledge) to warrant special data handling, and will forward this data for our standard nautical charting process.

You will need to have Winzip compression utility installed on your computer to access these files. The following link

http://www.winzip.com/downwz.htm will take you to the Winzip free evaluation site where you can register for Winzip and access the files.

To access this information follow this link ftp://205.156.4.84/4SHPO to NOAA's public ftp web site and select the aforementioned surveys (H12298, H12299, H12386).

The "Key" for these surveys (i.e. to remove the encryption from the .zip files) is: B363_NY_4617

Regards,

Marilyn Schlüter, Data Manager

NOAA/Atlantic Hydrographic Branch

757-441-6746 Ext.113

439 W. York St.

Norfolk, VA 23510

Bruce Terrell <bruce.terrell@noaa.gov>
To: Marilyn Schluter - NOAA Federal <marilyn.l.schluter@noaa.gov>

Thank you Marilyn. I have no comment. Bruce Terrell [Quoted text hidden]

Christina Rieth <CRIETH@mail.nysed.gov> To: Marilyn Schluter - NOAA Federal <marilyn.l.schluter@noaa.gov>

Dear Ms. Schluter,

Thu, Mar 21, 2013 at 11:57 AM

Thu, Mar 21, 2013 at 12:02 PM

Thank you for requesting the comments of the New York State Museum concerning this project(s) in Block Island Sound, New York. I have reviewed the supplied reports and have no additional comments regarding this project and have no concerns regarding the protection of underwater cultural resources under NYS Education Law 233.

Sincerely,

Christina Rieth New York State Museum

Christina B. Rieth, Ph.D. State Archaeologist and Director, Cultural Resource Survey Program New York State Museum Cultural Education Center 3122 Albany, New York 12230 Phone: (518)402-5975, Fax: (518)486-2149 Email: crieth@mail.nysed.gov http://www.nysm.nysed.gov/research_collections/

>>> Marilyn Schluter - NOAA Federal <marilyn.l.schluter@noaa.gov> 3/20/2013 10:24 AM >>> [Quoted text hidden]

Subject: Re: Crossline comparison

From: Chris van Westendorp < Christiaan. Van Westendorp@noaa.gov>

Date: Thu, 10 Sep 2009 13:00:35 -0400

To: "mark.blankenship" <Mark.Blankenship@noaa.gov>

CC: LCDR Rick Brennan <Richard.T.Brennan@noaa.gov>, Castle Parker <Castle.E.Parker@noaa.gov>, Edward Owens <Edward.Owens@noaa.gov>, LT Jasper Schaer <jasper.schaer@noaa.gov>, CDR Shep Smith <Shep.Smith@noaa.gov>, Daniel Wright <Daniel.Wright@noaa.gov>

Mark,

Per 5.1.4.3 of the HSSD, AHB authorizes TJ to use the Standard Deviation layer to conduct surface difference comparison and analysis on future survey submissions of multibeam data. This meets the crossline comparison requirement laid out in HSSD.

Please let me know if you have any questions or need for further clarification.

R/

LCDR Chris van Westendorp, NOAA

mark.blankenship wrote:

Chris,

You mentioned in the meeting today that AHB was not going to require the multiple CUBE surface comparison, instead allowing us to use a single surface standard deviation layer to do our checks with. Is there any memo coming out for that? Mark

LCDR Chris van Westendorp <<u>christiaan.vanwestendorp@noaa.gov</u>>

Atlantic Hydrographic Branch NOAA OCS

1 of 1

 From "Paul.Turner" <Paul.Turner@noaa.gov>

 Sent Friday, October 14, 2011 5:16 pm

 To CO.Thomas.Jefferson@noaa.gov, _OMAO MOA OPS Thomas Jefferson <OPS.Thomas.Jefferson@noaa.gov>

 Cc Jeffrey Ferguson <Jeffrey.Ferguson@noaa.gov>, James M Crocker <James.M.Crocker@noaa.gov>, Corey Allen <Corey.Allen@noaa.gov>

 Rcc

 Subject

 VDR-B363-TJ-11 -- Additional Sheet Assignment

 Attachments
 OPR-B363-TJ-11-Layout_Updated.png
 158K
 OPR-B363-TJ-11-Updated Sheets.zip
 539K

Good afternoon-

Please find attached the zip file containing the updated sheet assignment for OPR-B363-TJ-11. This is an offshore sheet, predominately > 20 meters of water depth with a **coverage requirement** of Complete Multibeam with Backscatter. Ancillary data and tides requirements will be sent out early next week.

The following sheet has been assigned:

H12386 7 NM SE of Montauk Point, NY Scale - 1:20,000 snm - 45 Inm ~ 1400

Please let me know if you have any comments or questions.

Paul Turner

--

Paul Turner Physical Scientist Office of Coast Survey National Ocean Service National Oceanic and Atmospheric Administration 1315 East West Highway, SSMC III Silver Spring, MD 20910 301-713-2702 *106

NOAA	Form	77-6

OMF Approval number 0648-0007 Expires 10/31/07 U.S DEPARTMENT OF COMMERCE

COAST F	PILOT REPORT
SUBMIT TO: NATIONAL OCEAN SERVICE, NOAA (N/CS51) 1315 EAST-WEST HIGHWAY, STATION 6230 SILVER SPRING, MD 20910-3282 FAX:	This record of your experience and observations when traversing the coast, entering port, and/or navigating inside waters will be used to update the Coast Pilot.
OBSERVER: NAME AND ADDRESS Matt Van Hoy 439 West York Street Norfolk VA 23510 TEL.(Daytime) _757-647-0187	DATE OF OBSERVATION 201116 DATE OF SUBMISSION Nov 2012 VESSEL NAME AND ADDRESS NOAA Ship Thomas Jefferson 439 West York Street Norfolk VA 23510
CHART NUMBER	COAST PILOT NUMBER and EDITION NUMBER
source of the information if other than personal observation	y affected text by page, paragraph(s), and line number(s). State the on. ationary Areas: Block Island Sound
(Continu	e on plain paper)

REQUEST FOR SURVEYS OR CHART CHANGE

List area for which surveys and/or changes in chart format, scale, or layout are needed. Include the name and geographic position of the area, the chart number of the largest scale chart that covers the area, and the reason for the request.

ADDITIONAL INFORMATION FOR THE COAST PILOT

We are particularly interested in information about unusually strong current; prominent landmarks; objects which provide particularly good radar return; sheltered anchorages (be explicit on direction of weather and type of bottom observed); drawbridge operation changes (e.g, drawbridge remains permanently in open position); changes in pilot pick-up points; changes in radio frequencies monitored by pilots, marine exchanges, harbor masters, or drawbridges.

This information is required as part of NOAA's function to maintain marine nautical charts. The information obtained will be used to update the Coast Pilot. Your response is voluntary and will be a matter of public record. Public reporting burden for this collection is estimated to average thirty minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the National Ocean Service (N/CS51), 1315 East-West Highway, Silver Spring, MD 20910-3282; and to the Office of Management and Budget, Paperwork Reduction Project (0648-0007) Washington, DC 20503.

APPENDIX III

SURVEY FEATURES REPORT

AWOIS - none Dangers to Navigation - none Maritime Boundary - none Wrecks - one

H12386 Wrecks

Registry Number:	H12386
State:	New York
Locality:	Block Island Sound
Sub-locality:	7 NM Southeast of Montauk Point, NY
Project Number:	OPR-B363-TJ-11
Survey Date:	10/31/2011 - 11/16/2011

Charts Affected

Number	ber Edition Date		Scale (RNC)	RNC Correction(s)*
13215	18th	08/01/2004	1:40,000 (13215_1)	[L]NTM: ?
13205	39th	12/01/2010	1:80,000 (13205_1)	USCG LNM: 8/13/2013 (8/20/2013) CHS NTM: None (7/26/2013) NGA NTM: 4/11/1998 (8/31/2013)
12300	47th	05/01/2008	1:400,000 (12300_1)	[L]NTM: ?
13006	34th	05/01/2007	1:675,000 (13006_1)	[L]NTM: ?
5161	13th	10/01/2003	1:1,058,400 (5161_1)	[L]NTM: ?
13003	49th	04/01/2007	1:1,200,000 (13003_1)	[L]NTM: ?

* Correction(s) - source: last correction applied (last correction reviewed--"cleared date")

Features

No.	Name	Feature Type	Survey Depth	Survey Latitude	Survey Longitude	AWOIS Item
1.1	104 ft wreck	Wreck	31.77 m	41° 05' 53.5" N	071° 43' 08.1" W	

1 - Wrecks

1.1) 104 ft wreck

Survey Summary

Survey Position:	41° 05' 53.5" N, 071° 43' 08.1" W
Least Depth:	31.77 m (= 104.24 ft = 17.374 fm = 17 fm 2.24 ft)
TPU (±1.96 σ):	THU (TPEh) [None] ; TVU (TPEv) [None]
Timestamp:	2011-320.00:00:00.000 (11/16/2011)
Dataset:	H12386_Wreck.000
FOID:	US 0001273882 00001(02260013701A0001)
Charts Affected:	13215_1, 13205_1, 12300_1, 13006_1, 5161_1, 13003_1

Remarks:

WRECKS/remrks: Found Uncharted Wreck.

Feature Correlation

Source	Feature	Range	Azimuth	Status
H12386_Wreck.000	US 0001273882 00001	0.00	000.0	Primary

Hydrographer Recommendations

Add New Wreck

Cartographically-Rounded Depth (Affected Charts):

104ft (13215_1, 13205_1) 17fm (12300_1, 13006_1, 13003_1) 32m (5161_1)

S-57 Data

Geo object 1: Wreck (WRECKS) Attributes: CATWRK - 1:non-dangerous wreck CONVIS - 2:not visual conspicuous EXPSOU - 1:within the range of depth of the surrounding depth area NINFOM - Chart wreck QUASOU - 6:least depth known SORDAT - 20111116 SORIND - US,US,graph,H12386 TECSOU - 3:found by multi-beam VALSOU - 31.773 m WATLEV - 3:always under water/submerged

Office Notes

SAR: Least depth confirmed with 100% SWMB.

COMPILE: Chart 104ft wreck at survey position.

Feature Images

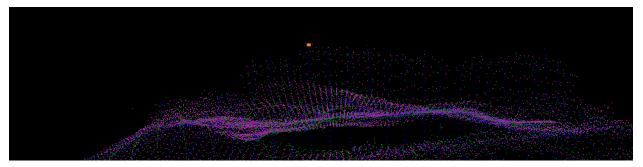


Figure 1.1.1

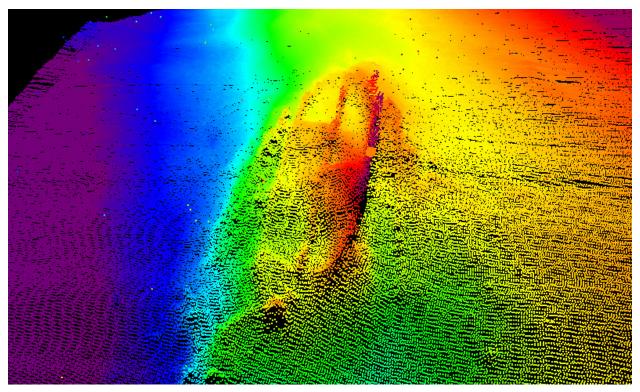


Figure 1.1.2

APPROVAL PAGE

H12386

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NGDC for archive

- H12386_DR.pdf
- Collection of depth varied resolution BAGS
- Processed survey data and records
- H12386_GeoImage.pdf

The survey evaluation and verification has been conducted according current OCS Specifications, and the survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved:__

LT Abigail Higgins, NOAA Chief, Atlantic Hydrographic Branch